131函数的单调性与导数.ppt
1.3.1 函数的单调性与导数函数的单调性与导数函数函数 y = f (x) 在给定区间在给定区间 G 上,当上,当 x 1、x 2 G 且且 x 1 x 2 时时yxoabyxoab1)都有)都有 f ( x 1 ) f ( x 2 ), 则则 f ( x ) 在在G 上是增函数上是增函数;2)都有)都有 f ( x 1 ) f ( x 2 ), 则则 f ( x ) 在在G 上是减函数上是减函数;若若 f(x) 在在G上是增函数或减函数,上是增函数或减函数,则则 f(x) 在在G上具有严格的单调性。上具有严格的单调性。G 称为称为单调区间单调区间G = ( a , b )复习引入复习引入:oyxyox1oyx1xy1122xxyxy3在在( ,0)和()和(0, )上分别是减函数。上分别是减函数。但在定但在定义域上不是减函数。义域上不是减函数。在(在( ,1)上是减)上是减函数,在(函数,在(1, )上)上是增函数。是增函数。在在( ,)上上是增函数是增函数概念回顾概念回顾画出下列函数的图像,并根据图像指出每个函数的单调区间画出下列函数的图像,并根据图像指出每个函数的单调区间(1)函数的单调性也叫函数的增减性;函数的单调性也叫函数的增减性; (2)函数的单调性是对某个区间而言的,它是个局部概函数的单调性是对某个区间而言的,它是个局部概 念。这个区间是定义域的子集。念。这个区间是定义域的子集。(3)单调区间:针对自变量单调区间:针对自变量x而言的。而言的。 若函数在此区间上是增函数,则为单调递增若函数在此区间上是增函数,则为单调递增区区间;间; 若函数在此区间上是减函数,则为单调递减区间。若函数在此区间上是减函数,则为单调递减区间。 以前以前,我们用定义来判断函数的单调性我们用定义来判断函数的单调性.在假设在假设x1x2的的前提下前提下,比较比较f(x1)与与f(x2)的大小的大小,在函数在函数y=f(x)比较复杂比较复杂的情况下的情况下,比较比较f(x1)与与f(x2)的大小并不很容易的大小并不很容易.如果利用如果利用导数来判断函数的单调性就比较简单导数来判断函数的单调性就比较简单.观观 察察: 下图下图(1)表示高台跳水运动员的高度表示高台跳水运动员的高度 h 随时间随时间 t 变化的变化的函数函数 的图象的图象, 图图(2)表示高台跳水运表示高台跳水运动员的速度动员的速度 v 随时间随时间 t 变化的函数变化的函数 的图象的图象. 运动员从起跳到最高点运动员从起跳到最高点, 以及从最高点到入水这两段时以及从最高点到入水这两段时间的运动状态有什么区别间的运动状态有什么区别?105 . 69 . 4)(2ttth5 . 69 . 4)(ttvaabbttvhOO 运动员从起跳到运动员从起跳到最高点最高点, ,离水面的高度离水面的高度h随时间随时间t 的增加而增加的增加而增加, ,即即h(t)h(t)是增函数是增函数. .相应相应地地, ,. 0)()(thtv 从最高点到入水从最高点到入水, ,运动员运动员离水面的高度离水面的高度h随时间随时间t t的的增加而减少增加而减少, ,即即h(t)h(t)是减函数是减函数. .相应地相应地, ,. 0)()(thtv(1)(1)(2)(2)xyOxyOxyOxyOy = xy = x2y = x3xy1 观察下面一些函数的图象观察下面一些函数的图象, 探讨函数的单调性与其导函探讨函数的单调性与其导函数正负的关系数正负的关系. 在某个区间在某个区间( (a, ,b) )内内, ,如果如果 , ,那么函数那么函数 在这个区间内单调递增在这个区间内单调递增; ; 如果如果 , ,那那么函数么函数 在这个区间内单调递减在这个区间内单调递减. .0)( xf)(xfy 0)( xf)(xfy 如果恒有如果恒有 ,则,则 是常数。是常数。)(xf0)(xf题题1 已知导函数已知导函数 的下列信息的下列信息:当当1 x 4 , 或或 x 1时时,当当 x = 4 , 或或 x = 1时时,)(xf ; 0)( xf; 0)( xf. 0)( xf试画出函数试画出函数 的图象的大致形状的图象的大致形状.)(xf解解: 当当1 x 4 , 或或 x 0(或或f(x)0,即在(0, 1上恒成立f xa-xx31max而 ( )在(0, 1上单调递增,( )(1)=-1g xxg xg 1a -2120 10 1已 知 函 数 ( ),( 若 ( ) 在(上 是 增 函 数 , 求的 取 值 范 围fxaxx,fxxx,a.增例增例2:322当a1时, ( )f xx 1对x (0, 1)也有 ( ) 0时,( )在(0, 1)上是增函数f xa-f x所以a的范围是-1,+ )在某个区间上,在某个区间上, ,f(x)在这个区间上单调递增)在这个区间上单调递增(递减);但由(递减);但由f(x)在这个区间上单调递增(递减)而)在这个区间上单调递增(递减)而仅仅得到仅仅得到 是不够的。还有可能导数等于是不够的。还有可能导数等于0也能使也能使f(x)在这个区间上单调,)在这个区间上单调,所以对于能否取到等号的问题需要单独验证所以对于能否取到等号的问题需要单独验证( )0(或0(或0)f x2120 10 1已知函数( ),(若( )在(上是增函数,求 的取值范围f xaxx, ,f xxx,a.增例增例2:322当a1时, ( )f xx 1对x (0, 1)也有 ( ) 0时,( )在(0, 1)上是增函数f xa-f x所以a的范围是-1,+ )本题用到一个重要的转化:本题用到一个重要的转化:maxminmf( )恒成立( )( )恒成立( )xmf xmf xmf x320已知函数 ( )=,(0, 1,若 ( )在(0, 1上是增函数,求 的取值范围练。习2f xax - xxaf xa3)2,作业:作业:已知函数已知函数f(x)=ax+3x-x+1在在R上是减函数,上是减函数,求求a的取值范围。的取值范围。a=-3