第五章二元一次方(杨.ppt
一、创设情景,提出问题问题: 1.文具盒中有红、黄两种颜色的彩笔共10支,请猜一猜红色、黄色彩笔各多少支? 2. 篮球联赛中,每场比赛都要分出胜负.在一次比赛中, 甲队共参加了22场比赛,你知道在这次比赛中甲队胜、负场数分别是多少吗?开拓思路,设想问题(1)第1题中,若用x,y分别表示红色彩笔、黄色彩笔的支数,则可以得到怎样的一个方程? xy=10第2题中,若用x,y分别表示甲队在全部比赛中的胜、负场数,则可以得到怎样的一个方程?xy=22(2)你得到的两个方程是一元一次方程吗?与一元一次方程比较有什么不同?如果让你给它起名字,你认为应该叫它什么合适?(教学说明:学生对这两个问题的猜想会有多种答案,教师尽量让学生多说,为下一步理解二元二次方程解的不唯一性做准备,思考中的两个问题引导学生初步体会二元一次方程的特点) 二、探索新知 解决问题 1.二元一次方程的概念(设计说明:由实际问题引导学生开始对二元一次方程概念的探索。学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于学生对概念的理解)学生给方程xy=10,xy=22命名之后,类比一元一次方程进一步讨论下面的问题:问题1:请你写出几个二元一次方程,和同桌交流,判断写出的方程是否符合要求问题2:请找出二元一次方程的特点含有两个未知数 含未知数项的次数是一次 是整式方程问题3:二元一次方程的定义(类比一元一次方程的定义由学生归纳得出)含有两个未知数且含未知数项的最高次数都是1的方程叫二元一次方程练一练: 请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由 2x5y=10 2xyz=1 2a3b=5 2x10 xy =0 解析 中含有三个未知数; 中10 xy的次数是2 所以,都不是二元一次方程, 是二元一次方程 (教学说明:本环节设计的问题引导学生用类比法分析二元一次方程的特征,逐步得出二元一次方程的定义,并在应用中进一步巩固对定义的理解) 2.二元一次方程组 设计说明:利用两个问题进一步熟悉如何列二元一次方程,如何找二元一次方程的解,同时为下面探究方程组的解做好准备,在此基础上利用问题3学习二元一次方程组的意义,学生很容易理解) 问题1::篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1. 已知甲队在一次比赛中共得40分,若用x,y分别表示甲队在全部比赛中的胜负场数,可以得出怎样的方程? 2xy=40问题2: 请将方程2xy=40的解填入表格中 问题3:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:(1)设胜的场数是x,负的场数是y,你能用方程把题目中的相等关系表示出来吗?xy=22 2xy=40(2)在上面的方程xy=22和2xy=40中,x的含义相同吗?y呢?x,y的含义分别相同.因而x,y必须同时满足方程xy=22和2xy=40.把它们联立起来, X+Y=22得: 2X+Y=40像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.说明:方程组各方程中,同一字母必须代表同一数量,才能合在一起 练习 已知x、y都是未知数,判别下列方程组是否为二元一次方程组? 解析 解析:是二元一次方程组,中第一个方程是二元二次方程,中的两个方程共含有3个未知数,所以不是二元一次方程组 (教学说明:学生独立思考列出方程,找出方程的解,结合实际问题逐步体会二元一次方程组的概念,做练习时不仅要得出结论还要说明理由,借此进一步加深对概念的理解)三、巩固训练 熟练技能 (设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对相关观念的理解,形成初步技能。) 四、课堂小节1.本课主要内容:二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解2. 主要学习方法:类比法 类比一元一次方程的知识学习二元一次方程的有关概念,在与二元一次方程解的比较中理解二元一次方程组的解的意义.3.学习本课需要注意的几个问题(1)二元一次方程必须同时符合三个条件这个方程中有且只有两个未知数;含求知数项的次数是1;对未知数来说,构成方程的代数式是整式。(2)与一元一次方程相比,二元一次方程的解是成对出现的且有无数个解.五、布置作业 1、必做题:课本95页习题8.1中的1、2、3; 2.选做题:习题8.1 中的4,5题 (教学说明:及时作业是巩固课堂学习知识的重要环节,练习题主要训练找方程(组)的解,分析数量关系列二元一次方程组)