1431提公因式法.ppt
14.3 14.3 因式分解因式分解14.3.1 14.3.1 提公因式法提公因式法1 1了解因式分解的意义,理解因式分解的概念及其与整式了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系乘法的区别和联系 2 2理解提公因式法并能熟练地运用提公因式法分解因式理解提公因式法并能熟练地运用提公因式法分解因式 整式的乘法整式的乘法计算下列各式计算下列各式: :x(x+1)= x(x+1)= (x+1)(x(x+1)(x1)= 1)= x x2 2 + x+ xx x2 21 1请把下列多项式写成整式的乘积的形式请把下列多项式写成整式的乘积的形式: :(1)x(1)x2 2+x =_;+x =_;(2)x(2)x2 21=_.1=_.x(x+1)x(x+1)(x+1)(x-1)(x+1)(x-1) 上面我们把一个多项式化成了几个上面我们把一个多项式化成了几个整式整式的的积积的形式的形式, ,像这样的式子变形叫做这个多项式的像这样的式子变形叫做这个多项式的因式分解因式分解, ,也叫做把也叫做把这个多项式这个多项式分解因式分解因式. .整式的乘法与因式整式的乘法与因式分解有什么关系?分解有什么关系?x x2 2-1 -1 因式分解因式分解整式乘法整式乘法(x+1)(x-1)(x+1)(x-1)因式分解与整式乘法是方向相反的变形因式分解与整式乘法是方向相反的变形. 由由p(a+b+c) = pa+pb+pcp(a+b+c) = pa+pb+pc可得可得: pa+pb+pc=p(a+b+c): pa+pb+pc=p(a+b+c) 一般地,如果多项式的各项有公因式,可以把这个公一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法的形式,这种分解因式的方法叫做提公因式法. . 它的各项都有一个公共的因式它的各项都有一个公共的因式p p , ,我们把因式我们把因式 p p 叫做叫做这个多项式各项的这个多项式各项的 _ ._ .pa+pb+pcpa+pb+pc 公因式公因式【例例1 1】把把8a8a3 3b b2 2 + 12ab + 12ab3 3c c 分解因式分解因式. .分析:分析:找公因式找公因式 1.1.系数的最大公约数系数的最大公约数 2.2.找相同字母找相同字母 3.3.相同字母的最低指数相同字母的最低指数公因式为:公因式为:4ab4ab2 2【解析解析】8a8a3 3b b2 2+12ab+12ab3 3c c =4ab=4ab2 2 2a2a2 2+4ab+4ab2 2 3bc3bc =4ab=4ab2 2(2a(2a2 2+3bc).+3bc).【例题例题】4 4 a a a a1 1b b2 2 【解析解析】2 2a a(b+cb+c)-3-3(b+cb+c) =(=(b+cb+c)()(2 2a a-3-3).).【例例2 2】把把2 2a a(b+cb+c)-3-3(b+cb+c)分解因式)分解因式. .分析:分析:这个多项式整体而言可分为两大项,即这个多项式整体而言可分为两大项,即2 2a a(b+cb+c)与与-3-3(b+cb+c),每项中都含有(),每项中都含有(b+cb+c), ,因此可以把因此可以把( (b+cb+c) )作为公因式提出来作为公因式提出来. .1 1. .写出下列多项式各项的公因式写出下列多项式各项的公因式. .(1 1)ma+mb ma+mb (2 2)4kx4kx8ky 8ky (3 3)5y5y3 3+20y+20y2 2 (4 4)a a2 2b b2ab2ab2 2+ab +ab m4k5y2ab随堂练习随堂练习2.2.(苏州(苏州中考)分解因式中考)分解因式 a a2 2a=a= 【解析解析】 a a2 2a=a(a-1).a=a(a-1).答案:答案:a(a-1)a(a-1)22a4a_.22 a4 a2 a (a 2)3.3.(盐城(盐城中考)因式分解中考)因式分解 【解析解析】用提公因式法因式分解:用提公因式法因式分解:答案:答案:2a(a-2)2a(a-2) 4 4. .把下列各式分解因式把下列各式分解因式(1 1)8x8x7272(2 2)a a2 2b b5ab5ab(3 3)4m4m3 36m6m2 2(4 4)a a2 2b b5ab+9b5ab+9b(5 5)a a2 2+ab+abacac=8=8(x x9 9)=ab=ab(a a5 5)=2m=2m2 2(2m2m3 3)=b=b(a a2 25a+95a+9)= =(a a2 2ab+acab+ac)= =a a(a ab+cb+c)(6 6) a a(x xy y)+b+b(y yx x); ;分析:分析:虽然虽然a a(x xy)y)与与b(yb(yx)x)看上去没有公因式,但仔看上去没有公因式,但仔细观察可以看出(细观察可以看出(x xy)y)与与(y(yx x)互为相反数,如果把)互为相反数,如果把其中一个提取一个其中一个提取一个“”号,则可以出现公因式,如号,则可以出现公因式,如:y yx=x=(x xy y)【解析解析】a a(x xy y)+b+b(y yx x) =a=a(x xy y)b b(x xy y) = =(x xy y)()(a ab b). .【解析解析】原式原式= =(a+ba+bc)(ac)(ab+c)b+c)(b(ba+c)(aa+c)(ab+c)b+c) = =(a ab+c)b+c)(a+b(a+bc)c)(b(ba+c)a+c) = =(a ab+c)(a+bb+c)(a+bc cb+ab+ac c) = =(a ab+c)(2ab+c)(2a2c2c) =2=2(a ab+c)(ab+c)(ac c). . 5 5. .把把(a+b(a+bc)(ac)(ab+c)+(bb+c)+(ba+c)(ba+c)(ba ac)c)分解因式分解因式. . 1. 1.一般地,如果多项式的各项有公因式,可以把这一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法的乘积的形式,这种分解因式的方法叫做提公因式法. .提公因式法提公因式法2.2.分解因式的方法:分解因式的方法:注意符号变化注意符号变化 通过本课时的学习,需要我们掌握:通过本课时的学习,需要我们掌握:练习练习p115 1、2、3作业作业p119 习题习题14.3第第1、6题题