181勾股定理课件.ppt
人教版八年级下册人教版八年级下册 勾股定理勾股定理 设计者:马玲玲设计者:马玲玲祝同学们学习快乐祝同学们学习快乐 读一读读一读 我国古代把直角三角形中较短的直角边称为我国古代把直角三角形中较短的直角边称为勾勾,较长的直角边称为较长的直角边称为股股,斜边称为,斜边称为弦弦.图图1-1称为称为“弦图弦图”,最早是由三国时期的数学家赵爽在为,最早是由三国时期的数学家赵爽在为周髀算经周髀算经作法时给出的作法时给出的. 弦弦股股勾勾图1-1图图1-2是在北京召开的是在北京召开的2002年国际数学家大会年国际数学家大会(TCM2002)的会标,其图案正是)的会标,其图案正是“弦图弦图”,它标志着中国古代的数学成就它标志着中国古代的数学成就.图1-2数学家毕达哥拉斯的发现:数学家毕达哥拉斯的发现:相传在相传在2500年前,古希腊著年前,古希腊著名数学家名数学家毕达哥拉斯毕达哥拉斯从朋友家的地砖铺成的地面上找到了答从朋友家的地砖铺成的地面上找到了答案,同学们看看图中有没有直角三角形,从中你能找到答案案,同学们看看图中有没有直角三角形,从中你能找到答案吗?吗?A、B、C的面积有什么关系?的面积有什么关系?直角三角形三边有什么关系?直角三角形三边有什么关系?ABCABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2cS正方形143 3182 分分“割割”成若干个直成若干个直角边为整数的三角形角边为整数的三角形(单位面积)(单位面积)ABCABC(图中每个小方格代表一个单位面积)(图中每个小方格代表一个单位面积)图图2-1图2-2 SA+SB=SCA的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积积(单位单位长度长度)图图1918图图2A、B、C面积面积关系关系直角三直角三角形三角形三边关系边关系448两直角边的平方和等于斜边的平方9ABC图图3-1ABC图图3-2分割成若干个直角边为分割成若干个直角边为整数的三角形整数的三角形cS正方形25144 3 12 (面积单位)(面积单位)一般的直角三角形一般的直角三角形三边为边关系三边为边关系探究二:ABCABCA的面的面积积(单位单位长度长度)B的面的面积积(单位单位长度长度)C的面的面积积(单位单位长度长度)图图2图图3A、B、C面积面积关系关系直角三直角三角形三角形三边关系边关系图图2图图3491392534sA+sB=sC两直角边的平方和两直角边的平方和等于斜边的平方等于斜边的平方A AB BC Ca ac cb bS Sa a+S+Sb b=S=Sc c设:直角三角形的三边长分别是设:直角三角形的三边长分别是a、b、c猜想猜想:两直角边两直角边a、b与斜边与斜边c 之间的关系?之间的关系?a a2 2+b+b2 2=c=c2 2a a2 2+b+b2 2=c=c2 2a ac cb b 直角三角形两直角边的平方和直角三角形两直角边的平方和等于斜边的平方等于斜边的平方. .勾勾股股弦弦 命题:命题:a a2 2+b+b2 2=c=c2 2a ac cb b 直角三角形两直角边的平方和直角三角形两直角边的平方和等于斜边的平方等于斜边的平方. .勾勾股股弦弦 勾股定理勾股定理( (毕达哥拉斯定理毕达哥拉斯定理) ) 两千多年前,古希腊有个哥拉两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,定理。为了纪念毕达哥拉斯学派,1955国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,理。为了纪念毕达哥拉斯学派,1955年年希腊曾经发行了一枚纪念邮票。希腊曾经发行了一枚纪念邮票。 我国是最早了解勾股定理的我国是最早了解勾股定理的国家之一。早在三千多年前,周国家之一。早在三千多年前,周朝数学家商高就提出,将一根直朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即股等于四,那么弦就等于五,即“勾三、股四、弦五勾三、股四、弦五”,它被记,它被记载于我国古代著名的数学著作载于我国古代著名的数学著作周髀算经周髀算经中。中。做一做:做一做: P62540026xP的面积的面积 =_X=_X=_24322622x24225BACAB=_AC=_BC=_2515202.2.求下列图中表示边的未知数求下列图中表示边的未知数x x、y y、z z的值的值. .8181144144x xy yz z625625576576144144169169X=81+1442Y=169-144Z=625-57622X=15Y=5Z=7比比一一比比看看看看谁谁算算得得快!快!3.3.求下列直角三角形中未知边的长求下列直角三角形中未知边的长: :可用勾股定理建立方程可用勾股定理建立方程.方法小结方法小结:8 8x x171716162020 x x12125 5x x、本节课我们经历了怎样的过程?、本节课我们经历了怎样的过程?经历了从实际问题引入数学问题然后发现定理,再到探经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程。索定理,最后学会验证定理及应用定理解决实际问题的过程。、本节课我们学到了什么?、本节课我们学到了什么?通过本节课的学习我们不但知道了著名的勾股定理,还通过本节课的学习我们不但知道了著名的勾股定理,还知道从特殊到一般的探索方法及借助于图形的面积来探索、知道从特殊到一般的探索方法及借助于图形的面积来探索、验证数学结论的数形结合思想。验证数学结论的数形结合思想。、学了本节课后我们有什么感想和疑惑?、学了本节课后我们有什么感想和疑惑? 很多的数学结论存在于平常的生活中,需要我们用数学很多的数学结论存在于平常的生活中,需要我们用数学的眼光去观察、思考、发现,这节课我们还受到了数学文化的眼光去观察、思考、发现,这节课我们还受到了数学文化辉煌历史的教育。辉煌历史的教育。例例1. 在RtABC中,. C=90 (1)已知, a=5 , b=12 . 那么 c =_. (2)已知. b=9 , c=15 . 那么 a=_. (3)已知, A=30 , c=8 , 则a=_, b=_. 例例2.小波家买了一部新彩电,小波量了电视机的屏幕后,发现屏幕长58厘米和宽46厘米,就问妈妈彩电是多少英寸,妈妈告诉他: “我们平常所说的电视机多少英寸指的是屏幕对角线的长度,1英寸等于2.54厘米,利用你所学的知识算一下电视机是多少英寸的?”完成下面的练习完成下面的练习00 作业快餐作业快餐! 教材第教材第77页习题页习题18.1第第1、2、3题题