2022最新人教版高二数学教案2021文案.doc
-
资源ID:18275065
资源大小:15.50KB
全文页数:5页
- 资源格式: DOC
下载积分:15金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022最新人教版高二数学教案2021文案.doc
2022最新人教版高二数学教案2021文案a|b|cosq叫a与b的数量积,记作a×b,即有a×b=|a|b|cosq,(0).并规定0向量与任何向量的数量积为0.×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.人教版高二数学教案2021文案4教学准备教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件.教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数,使=五,课堂小结(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题板书略人教版高二数学教案2021文案5教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。教学重难点重点:感受周期现象的存在,会判断是否为周期现象。难点:周期函数概念的理解,以及简单的应用。教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,取出一个钟表,实际操作我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3P4的相关内容,并思考回答下列问题:如何理解“散点图”?图1-1中横坐标和纵坐标分别表示什么?如何理解图1-1中的“H/m”和“t/h”?对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。(板书:二、周期函数的概念)3.展示投影练习:(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。求f(x+2T),f(x+3T)略解:f(x+2T)=f(x+T)+T=f(x+T)=f(x)f(x+3T)=f(x+2T)+T=f(x+2T)=f(x)本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=2005,求f(11)略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2【巩固深化,发展思维】1.请同学们先自主学习课本P4倒数第五行P5倒数第四行,然后各个学习小组之间展开合作交流。2.例题讲评例1.地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数y=f(t)是不是周期函数?例2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是的周期函数。例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。3.小组课堂作业(1)课本P6的思考与交流(2)(回答)今天是星期三那么7k(kZ)天后的那一天是星期几?7k(kZ)天前的那一天是星期几?100天后的那一天是星期几?五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.板书略人教版高二数学教案文案第 5 页 共 5 页