2022最新人教高中必修1数学教案模板.doc
2022最新人教高中必修1数学教案模板f_AÎ叫值域(range)。显然,值域是集合B的子集。注意: “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素 定义域、对应关系和值域。3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从 集合A到集合B的一个映射。4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb££的实数x的集合叫做闭区间,表示为a,b;(2) 满足不等式axb<<的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法 解析法 列表法 图像法人教高中必修1数学教案3教学目标:1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。教学重点、难点:1、 重点:指数函数的图像和性质2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。教学方法:引导发现教学法、比较法、讨论法教学过程:一、事例引入T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?S: -T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,-。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数点题。二、指数函数的定义C:定义: 函数 y = a x (a>0且a1)叫做指数函数, xR.。问题 1:为何要规定 a > 0 且 a 1?S:(讨论)C: (1)当 a <0 时,a x 有时会没有意义,如 a=3 时,当x=就没有意义;(2)当 a=0时,a x 有时会没有意义,如x= - 2时,(3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。巩固练习1:下列函数哪一项是指数函数( )A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x人教高中必修1数学教案4教学目标:掌握对数函数的性质。应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。教学重点与难点:对数函数的性质的应用。教学过程设计:复习提问:对数函数的概念及性质。开始正课1 比较数的大小例 1 比较下列各组数的大小。loga5.1 ,loga5.9 (a>0,a1)log0.50.6 ,log0.5 ,ln师:请同学们观察一下中这两个对数有何特征?生:这两个对数底相等。师:那么对于两个底相等的对数如何比大小?生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。师:对,请叙述一下这道题的解题过程。生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1板书:解:)当05.1<5.9 loga5.1>loga5.9)当a>1时,函数y=logax在(0,+)上是增函数,5.1<5.9 loga5.1师:请同学们观察一下中这三个对数有何特征?生:这三个对数底、真数都不相等。师:那么对于这三个对数如何比大小?生:找“中间量”, log0.50.6>0,ln>0,log0.5<0;ln>1,log0.50.6<1,所以log0.5< log0.50.6< ln。板书:略。师:比较对数值的大小常用方法:构造对数函数,直接利用对数函数 的单调性比大小,借用“中间量”间接比大小,利用对数函数图象的位置关系来比大小。2 函数的定义域, 值 域及单调性。人教高中必修1数学教案5函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;3.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=(1+x)n (nN)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。人教高中必修1数学教案第 6 页 共 6 页