2022最新高三一轮复习数学教案5篇最新.doc
2022最新高三一轮复习数学教案5篇最新第一轮复习是对高中所学的数学知识进行全面的梳理和复习,即系统地整理知识,优化知识结构。其指导思想是全面、扎实、系统、灵活。全面即全面覆盖;扎实抓好单元知识的理解、巩固、深化;,今天小编在这里整理了一些高三一轮复习数学教案5篇最新,我们一起来看看吧!高三一轮复习数学教案1一、教材分析1、教材的地位和作用:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。3、教学重点和难点根据教学大纲的要求我确定本节课的教学重点为:等差数列的概念。等差数列的通项公式的.推导过程及应用。由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。二、学情教法分析:对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。三、学法指导:在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。四、教学程序本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。(一)复习引入:1.从函数观点看,数列可看作是定义域为_对应的一列函数值,从而数列的通项公式也就是相应函数的_。(N;解析式)通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 通过练习2和3引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情站境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。(二) 新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调: “从第二项起”满足条件;公差d一定是由后项减前项所得;每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。1. 9 ,8,7,6,5,4,; d=-12. 0.70,0.71,0.72,0.73,0.74; d=0.013. 0,0,0,0,0,0,.; d=04. 1,2,3,2,3,4,;×5. 1,0,1,0,1,×其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法,资料共享平台高中数学说课稿:等差数列。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。若一等差数列an 的首项是a1,公差是d,则据其定义可得:a2 - a1 =d 即: a2 =a1 +da3 a2 =d 即: a3 =a2 +d = a1 +2da4 a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法-迭加法:a2 a1 =da3 a2 =da4 a3 =dan an-1=d将这(n-1)个等式左右两边分别相加,就可以得到 an a1= (n-1) d即 an= a1+(n-1) d (1)当n=1时,(1)也成立,所以对一切nN,上面的公式都成立因此它就是等差数列an的通项公式。在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求接着举例说明:若一个等差数列an的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,即an=2n-1 以此来巩固等差数列通项公式运用同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。(三)应用举例这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。例1 (1)求等差数列8,5,2,的第20项;第30项;第40项(2)-401是不是等差数列-5,-9,-13,的项?如果是,是第几项?在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.例2 在等差数列an中,已知a5=10,a12 =31,求首项a1与公差d。在前面例1的基础上将例2当作练习作为对通项公式的巩固例3 是一个实际建模问题建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型-等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法(四)反馈练习1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。目的:对学生加强建模思想训练。3、若数例an 是等差数列,若 bn = k an ,(k为常数)试证明:数列bn是等差数列此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。(五)归纳小结(由学生总结这节课的收获)1.等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2.等差数列的通项公式 an= a1+(n-1) d会知三求一3.用“数学建模”思想方法解决实际问题(六)布置作业必做题:课本P114 习题3.2第2,6 题选做题:已知等差数列an的首项a1=-24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)五、板书设计在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。高三一轮复习数学教案2高中数学菱形教案一、教学目标1.把握菱形的判定.2.通过运用菱形知识解决具体问题,提高分析能力和观察能力.3.通过教具的演示培养学生的学习爱好.4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为 ,则对角线交点到一边距离为_.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱互相垂直的'平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线互相垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗?为什么?可画出图,显然对角线 ,但都不是菱形.菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4 已知: 的对角钱 的垂直平分线与边 、 分别交于 、 ,如图.求证:四边形 是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区别与联系.2.思考题:已知:如图4 中, , 平分 , , , 交 于 .求证:四边形 为菱形.八、布置作业教材P159中9、10、11、13(2)九、板书设计十、随堂练习教材P153中1、2、3高三一轮复习数学教案3高中数学必修教案一、教学过程1.复习。反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。求出函数y=x3的反函数。2.新课。先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反应。生2:这是y=x3的反函数y=的图象。师:对,但是怎么会得到这个图象,请大家讨论。(学生展开讨论,但找不出原因。)师:我们请生1再给大家演示一下,大家帮他找找原因。(生1将他的制作过程重新重复了一次。)生3:问题出在他选择的次序不对。师:哪个次序?生3:作点B前,选择xA和xA3为B的坐标时,他先选择xA3,后选择xA,作出来的点的坐标为(xA3,xA),而不是(xA,xA3)。师:是这样吗?我们请生1再做一次。(这次生1在做的过程当中,按xA、xA3的次序选择,果然得到函数y=x3的图象。)师:看来问题确实是出在这个地方,那么请同学再想想,为什么他采用了错误的次序后,恰好得到了y=x3的反函数y=的图象呢?(学生再次陷入思考,一会儿有学生举手。)师:我们请生4来告诉大家。生4:因为他这样做,正好是将y=x3上的点B(x,y)的横坐标x与纵坐标y交换,而y=x3的反函数也正好是将x与y交换。师:完全正确。下面我们进一步研究y=x3的图象及其反函数y=的图象的.关系,同学们能不能看出这两个函数的图象有什么样的关系?(多数学生回答可由y=x3的图象得到y=的图象,于是教师进一步追问。)师:怎么由y=x3的图象得到y=的图象?生5:将y=x3的图象上点的横坐标与纵坐标交换,可得到y=的图象。师:将横坐标与纵坐标互换?怎么换?(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。)师:我其实是想问大家这两个函数的图象有没有对称关系,有的话,是什么样的对称关系?(学生重新开始观察这两个函数的图象,一会儿有学生举手。)生6:我发现这两个图象应是关于某条直线对称。师:能说说是关于哪条直线对称吗?生6:我还没找出来。(接下来,教师引导学生利用几何画板找出两函数图象的对称轴,画出如下图形,如图2所示:)学生通过移动点A(点B、C随之移动)后发现,BC的中点M在同一条直线上,这条直线就是两函数图象的对称轴,在追踪M点后,发现中点的轨迹是直线y=x。生7:y=x3的图象及其反函数y=的图象关于直线y=x对称。师:这个结论有一般性吗?其他函数及其反函数的图象,也有这种对称关系吗?请同学们用其他函数来试一试。(学生纷纷画出其他函数与其反函数的图象进行验证,最后大家一致得出结论:函数及其反函数的图象关于直线y=x对称。)还是有部分学生举手,因为他们画出了如下图象(图3):教师巡视全班时已经发现这个问题,将这个图象传给全班学生后,几乎所有人都看出了问题所在:图中函数y=x2(xR)没有反函数,也不是函数的图象。最后教师与学生一起总结:点(x,y)与点(y,x)关于直线y=x对称;函数及其反函数的图象关于直线y=x对称。二、反思与点评1.在开学初,我就教学几何画板4。0的用法,在教函数图象画法的过程当中,发现学生根据选定坐标作点时,不太注意选择横坐标与纵坐标的顺序,本课设计起源于此。虽然几何画板4。04中,能直接根据函数解析式画出图象,但这样反而不能揭示图象对称的本质,所以本节课教学中,我有意选择了几何画板4。0进行教学。2.荷兰数学教育家弗赖登塔尔认为,数学学习过程当中,可借助于生动直观的形象来引导人们的思想过程,但常常由于图形或想象的错误,使人们的思维误入歧途,因此我们既要借助直观,但又必须在一定条件下摆脱直观而形成抽象概念,要注意过于直观的例子常常会影响学生正确理解比较抽象的概念。计算机作为一种现代信息技术工具,在直观化方面有很强的表现能力,如在函数的图象、图形变换等方面,利用计算机都可得到其他直观工具不可能有的效果;如果只是为了直观而使用计算机,但不能达到更好地理解抽象概念,促进学生思维的目的的话,这样的教学中,计算机最多只是一种普通的直观工具而已。在本节课的教学中,计算机更多的是作为学生探索发现的工具,学生不但发现了函数与其反函数图象间的对称关系,而且在更深层次上理解了反函数的概念,对反函数的存在性、反函数的求法等方面也有了更深刻的理解。当前计算机用于中学数学的主要形式还是以辅助为主,更多的是把计算机作为一种直观工具,有时甚至只是作为电子黑板使用,今后的发展方向应是:将计算机作为学生的认知工具,让学生通过计算机发现探索,甚至利用计算机来做数学,在此过程当中更好地理解数学概念,促进数学思维,发展数学创新能力。3.在引出两个函数图象对称关系的时候,问题设计不甚妥当,本来是想要学生回答两个函数图象对称的关系,但学生误以为是问如何由y=x3的图象得到y=的图象,以致将学生引入歧途。这样的问题在今后的教学中是必须力求避免的。高三一轮复习数学教案4高中数学等差数列前n项和的公式说课稿。教学目标A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。C、情感目标:(数学文化价值)(1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。(2)通过公式的运用,树立学生;大众教学;的思想意识。(3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。教学重点:等差数列前n项和的'公式。教学难点:等差数列前n项和的公式的灵活运用。教学方法:启发、讨论、引导式。教具:现代教育多媒体技术。教学过程一、创设情景,导入新课。师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯;神速求和;的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:;把从1到100的自然数加起来,和是多少?;年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。例1,计算:1+2+3+4+5+6+7+8+9+10.这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成S=10+9+8+7+6+5+4+3+2+1。上面两式相加得2S=11+10+.+11=10×11=11010个所以我们得到S=55,即1+2+3+4+5+6+7+8+9+10=55师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。理由是:1+100=2+99=3+98=.=50+51=101,有50个101,所以1+2+3+.+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?生3:数列an是等差数列,若m+n=p+q,则am+an=ap+aq.二、教授新课(尝试推导)师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。生4:Sn=a1+a2+.an-1+an也可写成Sn=an+an-1+.a2+a1两式相加得2Sn=(a1+an)+(a2+an-1)+.(an+a1)n个=n(a1+an)所以Sn=#FormatImgID_0#(I)师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得Sn=na1+#FormatImgID_1#d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?an=a1+(n-1)d,Sn=#FormatImgID_2#=na1+#FormatImgID_3#d;这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用,三、公式的应用(通过实例演练,形成技能)。1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:(1)1+2+3+.+n(2)1+3+5+.+(2n-1)(3)2+4+6+.+2n(4)1-2+3-4+5-6+.+(2n-1)-2n请同学们先完成(1)-(3),并请一位同学回答。生5:直接利用等差数列求和公式(I),得(1)1+2+3+.+n=#FormatImgID_4#(2)1+3+5+.+(2n-1)=#FormatImgID_5#(3)2+4+6+.+2n=#FormatImgID_6#=n(n+1)师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式=1+3+5+.+(2n-1)-(2+4+6+.+2n)=n2-n(n+1)=-n生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=-1-1-.-1=-nn个师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。例3、(1)数列an是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4又d=-2,a1=6S12=12 a1+66×(-2)=-60生9:(2)由a1+a2+a3=12,a1+d=4a8+a9+a10=75,a1+8d=25解得a1=1,d=3 S10=10a1+#FormatImgID_7#=145师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。师:(继续引导学生,将第(2)小题改编)数列an等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。2、用整体观点认识Sn公式。例4,在等差数列an, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)师:来看第(1)小题,写出的计算公式S16=#FormatImgID_8#=8(a1+a6)与已知相比较,你发现了什么?生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。最后请大家课外思考Sn公式(1)的逆命题:已知数列an的前n项和为Sn,若对于所有自然数n,都有Sn=#FormatImgID_9#。数列an是否为等差数列,并说明理由。四、小结与作业。师:接下来请同学们一起来小结本节课所讲的内容。生11:1、用倒序相加法推导等差数列前n项和公式。2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。生12:1、运用Sn公式要注意此等差数列的项数n的值。2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。高三一轮复习数学教案5高中数学反函数教案教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。教学重点1.反函数的概念;2.反函数的求法。教学难点反函数的概念。教学方法师生共同讨论教具装备幻灯片2张第一张:反函数的定义、记法、习惯记法。(记作A);第二张:本课时作业中的预习内容及提纲。教学过程(I)讲授新课(检查预习情况)师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?生:(略)(学生回答之后,打出幻灯片A)。师:反函数的定义着重强调两点:(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=(y);(2)对于y在c中的任一个值,通过x=(y),x在A中都有惟一的值和它对应。师:应该注意习惯记法是由记法改写过来的'。师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?生:一一映射确定的函数才有反函数。(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)在y= f(x)中与y= f 1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)由此,请同学们谈一下,函数y= f(x)与它的反函数y= f 1(x)两者之间,定义域、值域存在什么关系呢?生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。师:从反函数的概念可知:函数y= f (x)与y= f 1(x)互为反函数。从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:(1)由y= f (x)解出x= f 1(y),即把x用y表示出;(2)将x= f 1(y)改写成y= f 1(x),即对调x= f 1(y)中的x、y。(3)指出反函数的定义域。下面请同学自看例1(II)课堂练习 课本P68练习1、2、3、4。(III)课时小结本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。(IV)课后作业一、课本P69习题2.4 1、2。二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。板书设计课题: 求反函数的方法步骤:定义:(幻灯片)注意: 小结一一映射确定的函数才有反函数函数与它的反函数定义域、值域的关系。高三一轮复习数学教案5篇第 20 页 共 20 页