2022年各地中考数学解析版试卷分类汇编反比例函数.docx
-
资源ID:18762000
资源大小:561KB
全文页数:41页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年各地中考数学解析版试卷分类汇编反比例函数.docx
反比例函数一、选择题12022·黑龙江大庆Ax1,y1、Bx2,y2、Cx3,y3是反比例函数y=上的三点,假设x1x2x3,y2y1y3,那么以下关系式不正确的选项是Ax1x20 Bx1x30 Cx2x30 Dx1+x20【考点】反比例函数图象上点的坐标特征【分析】根据反比例函数y=和x1x2x3,y2y1y3,可得点A,B在第三象限,点C在第一象限,得出x1x20x3,再选择即可【解答】解:反比例函数y=中,20,在每一象限内,y随x的增大而减小,x1x2x3,y2y1y3,点A,B在第三象限,点C在第一象限,x1x20x3,x1x20,应选A【点评】此题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,此题是逆用,难度有点大22022·湖北十堰如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点不与端点A,B重合,作CDOB于点D,假设点C,D都在双曲线y=上k0,x0,那么k的值为A25B18C9D9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质【分析】过点A作AEOB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CDOB,AEOB可找出CDAE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论【解答】解:过点A作AEOB于点E,如下列图OAB为边长为10的正三角形,点A的坐标为10,0、点B的坐标为5,5,点E的坐标为,CDOB,AEOB,CDAE,设=n0n1,点D的坐标为,点C的坐标为5+5n,55n点C、D均在反比例函数y=图象上,解得:应选C【点评】此题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标此题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键3. (2022·新疆)Ax1,y1,Bx2,y2是反比例函数y=k0图象上的两个点,当x1x20时,y1y2,那么一次函数y=kxk的图象不经过A第一象限 B第二象限 C第三象限 D第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系【分析】首先根据x1x20时,y1y2,确定反比例函数y=k0中k的符号,然后再确定一次函数y=kxk的图象所在象限【解答】解:当x1x20时,y1y2,k0,k0,一次函数y=kxk的图象经过第一、三、四象限,不经过第二象限,应选:B【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号4. (2022·云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点假设EO=EF,EOF的面积等于2,那么k=A4 B2 C1 D2【考点】反比例函数系数k的几何意义【分析】此题应先由三角形的面积公式,再求解k即可【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点假设EO=EF,EOF的面积等于2,所以,解得:xy=2,所以:k=2,应选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k5. 2022·四川达州·3分以下说法中不正确的选项是A函数y=2x的图象经过原点B函数y=的图象位于第一、三象限C函数y=3x1的图象不经过第二象限D函数y=的值随x的值的增大而增大【考点】正比例函数的性质;一次函数的性质;反比例函数的性质【分析】分别利用正比例函数以及反比例函数的定义分析得出答案【解答】解:A、函数y=2x的图象经过原点,正确,不合题意;B、函数y=的图象位于第一、三象限,正确,不合题意;C、函数y=3x1的图象不经过第二象限,正确,不合题意;D、函数y=的值,在每个象限内,y随x的值的增大而增大,故错误,符合题意应选:D6. 2022·四川乐山·3分如图5,在反比例函数的图象上有一动点,连接并延长交图象的另一支于点,在第一象限内有一点,满足,当点运动时,点始终在函数的图象上运动,假设,那么的值为答案:D解析:连结CO,由双曲线关于原点对称,知AOBO,又CACB,所以,COAB,因为,所以,2作AEx轴,CDx轴于E、D点。那么有OCDOEA,所以,设Cm,n,那么有A,所以,解得:k87. 2022·四川凉山州·4分二次函数y=ax2+bx+ca0的图象如图,那么反比例函数与一次函数y=bxc在同一坐标系内的图象大致是ABCD【考点】反比例函数的图象;一次函数的图象;二次函数的图象【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【解答】解:观察二次函数图象可知:开口向上,a0;对称轴大于0,0,b0;二次函数图象与y轴交点在y轴的正半轴,c0反比例函数中k=a0,反比例函数图象在第二、四象限内;一次函数y=bxc中,b0,c0,一次函数图象经过第二、三、四象限应选C8. 2022,湖北宜昌,15,3分函数y=的图象可能是A B C D【考点】反比例函数的图象【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位应选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解此题的关键9. 2022吉林长春,8,3分如图,在平面直角坐标系中,点P1,4、Qm,n在函数y=x0的图象上,当m1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、DQD交PA于点E,随着m的增大,四边形ACQE的面积A减小 B增大 C先减小后增大 D先增大后减小【考点】反比例函数系数k的几何意义【分析】首先利用m和n表示出AC和AQ的长,那么四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断【解答】解:AC=m1,CQ=n,那么S四边形ACQE=ACCQ=m1n=mnnP1,4、Qm,n在函数y=x0的图象上,mn=k=4常数S四边形ACQE=ACCQ=4n,当m1时,n随m的增大而减小,S四边形ACQE=4n随m的增大而增大应选B【点评】此题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键10. (2022兰州,2,4分)反比例函数的图像在。A第一、二象限B第一、三象限C第二、三象限D第二、四象限【答案】B【解析】反比例函数 的图象受到𝑘的影响,当 k 大于 0 时,图象位于第一、三象限,当 k小于 0 时,图象位于第二、四象限,此题中 k 2 大于 0,图象位于第一、三象限,所以答案选 B。【考点】反比例函数的系数 k 与图象的关系【考点】:反比例函数的性质 11.2022·广东广州一司机驾驶汽车从甲地去乙地,他以80千米小时的平均速度用了4小时到达乙地。当他按照原路返回时,汽车的速度v 千米小时与时间t小时的函数关系是A、v=320tB、C、v=20tD、难易 较易考点 反比例函数,行程问题解析 由路程速度时间,可以得出甲乙两地的距离为320千米,返程时路程不变,由路程速度时间,得 速度路程时间,所以参考答案 B12.2022·广西贺州抛物线y=ax2+bx+c的图象如下列图,那么一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为A B C D【考点】二次函数的图象;一次函数的图象;反比例函数的图象【专题】压轴题【分析】根据二次函数图象与系数的关系确定a0,b0,c0,根据一次函数和反比例函数的性质确定答案【解答】解:由抛物线可知,a0,b0,c0,一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,应选:B【点评】此题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键132022·江苏连云港姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小根据他们的描述,姜老师给出的这个函数表达式可能是Ay=3xBCDy=x2【分析】可以分别写出选项中各个函数图象的特点,与题目描述相符的即为正确的,不符的就是错误的,此题得以解决【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,应选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,应选项B正确;的图象在二、四象限,应选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,应选项D错误;应选B【点评】此题考查反比例函数的性质、正比例函数的性质、二次函数的性质,解题的关键是明确它们各自图象的特点和性质142022·江苏苏州点A2,y1、B4,y2都在反比例函数y=k0的图象上,那么y1、y2的大小关系为Ay1y2By1y2Cy1=y2D无法确定【考点】反比例函数图象上点的坐标特征【分析】直接利用反比例函数的增减性分析得出答案【解答】解:点A2,y1、B4,y2都在反比例函数y=k0的图象上,每个象限内,y随x的增大而增大,y1y2,应选:B152022辽宁沈阳如图,在平面直角坐标系中,点P是反比例函数y=x0图象上的一点,分别过点P作PAx轴于点A,PBy轴于点B假设四边形OAPB的面积为3,那么k的值为A3 B3 C D【考点】反比例函数系数k的几何意义【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|再由函数图象所在的象限确定k的值即可【解答】解:点P是反比例函数y=x0图象上的一点,分别过点P作PAx轴于点A,PBy轴于点B假设四边形OAPB的面积为3,矩形OAPB的面积S=|k|=3,解得k=±3又反比例函数的图象在第一象限,k=3应选A【点评】此题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义二、填空题12022·湖北鄂州如图,直线 与x轴、y轴相交于P、Q两点,与y=的图像相交于A2,m、B1,n两点,连接OA、OB. 给出以下结论: k1k2<0;m+n=0; SAOP= SBOQ;不等式k1x+b的解集是x<2或0<x<1,其中正确的结论的序号是 .【考点】反比例函数,一次函数,不等式【分析】由直线 的图像在二、四象限,知k1<0;y=的图像在二、四象限,知k2<0;因此k1k20,所以错误;A,B两点在y=的图像上,故将A2,m、B1,n代入,得m=,n= k2;从而得出m+n=0,故正确;令x=0,那么y=b,所以Q0,b,那么SBOQ=×1×b= -b;将A2,m、B1,n分别代入,解得k1=,所以y=x+b;令y=0,那么x=-b,所以P-b,0,那么SAOP=×|-2|×-b= -b;所以SAOP= SBOQ,故正确;由图像知,在A点左边,不等式k1x+b的图像在的图像的上边,故满足k1x+b;在Q点与A点之间,不等式k1x+b的图像在的图像的上边,故满足k1x+b;因此不等式k1x+b的解集是x<2或0<x<1. 故正确.【解答】解:由直线 的图像在二、四象限,知k1<0;双曲线y=的图像在二、四象限,知k2<0;k1k20;错误;A,B两点在y=的图像上,故将A2,m、B1,n代入,得m=,n= k2;将n= k2代入m=中,得m=,即m+n=0.正确;令x=0,那么y=b,所以Q0,b,那么SBOQ=×1×b= -b;将A2,m、B1,n分别代入,解得k1=,y=x+b;令y=0,那么x=-b,P-b,0,SAOP=×|-2|×-b= -b;SAOP= SBOQ.正确;由图像知,在A点左边,不等式k1x+b的图像在的图像的上边,故满足k1x+b;在Q点与A点之间,不等式k1x+b的图像在的图像的上边,故满足k1x+b;因此不等式k1x+b的解集是x<2或0<x<1. 正确.综上,正确的答案为:【点评】此题考查了反比例函数,一次函数,不等式注意反比例函数的单调性:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。此题中要注意中的b<0,不等式k1x+b的解集可以直接从图中得出. 2. 2022·四川成都·4分P1x1,y1,P2x2,y2两点都在反比例函数y=的图象上,且x1x20,那么y1y2填“或“【考点】反比例函数图象上点的坐标特征;反比例函数的性质【分析】根据一次函数的系数k的值可知,该函数在x0内单调递减,再结合x1x20,即可得出结论【解答】解:在反比例函数y=中k=20,该函数在x0内单调递减x1x20,y1y2故答案为:3. 2022·四川达州·3分如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A3,0,B0,6分别在x轴,y轴上,反比例函数y=x0的图象经过点D,且与边BC交于点E,那么点E的坐标为2,7【考点】反比例函数图象上点的坐标特征【分析】首先过点D作DFx轴于点F,易证得AOBDFA,然后由相似三角形的对应边成比例,求得点D的坐标,即可求得反比例函数的解析式,再利用平移的性质求得点C的坐标,继而求得直线BC的解析式,那么可求得点E的坐标【解答】解:过点D作DFx轴于点F,那么AOB=DFA=90°,OAB+ABO=90°,四边形ABCD是矩形,BAD=90°,AD=BC,OAB+DAF=90°,ABO=DAF,AOBDFA,OA:DF=OB:AF=AB:AD,AB:BC=3:2,点A3,0,B0,6,AB:AD=3:2,OA=3,OB=6,DF=2,AF=4,OF=OA+AF=7,点D的坐标为:7,2,反比例函数的解析式为:y=,点C的坐标为:4,8,设直线BC的解析式为:y=kx+b,那么,解得:,直线BC的解析式为:y=x+6,联立得:或舍去,点E的坐标为:2,7故答案为:2,74. 2022·四川广安·3分假设反比例函数y=k0的图象经过点1,3,那么第一次函数y=kxkk0的图象经过一、二、四象限【考点】反比例函数图象上点的坐标特征;一次函数的图象【分析】由题意知,k=1×3=30,所以一次函数解析式为y=3x+3,根据k,b的值判断一次函y=kxk的图象经过的象限【解答】解:反比例函数y=k0的图象经过点1,3,k=1×3=30,一次函数解析式为y=3x+3,根据k、b的值得出图象经过一、二、四象限故答案为:一、二、四5.(2022兰州,18,4分)双曲线在每个象限内,函数值 y 随 x 的增大而增大,那么 m 的取值范围是.【答案】 m 1【解析】根据题意 m-1<0,那么 m<1【考点】反比例函数的性质6. 2022江苏淮安,15,3分假设点A2,3、Bm,6都在反比例函数y=k0的图象上,那么m的值是1【考点】反比例函数图象上点的坐标特征【分析】由点A的坐标利用反比例函数图象上点的坐标特征即可得出k值,再结合点B在反比例函数图象上,由此即可得出关于m的一元一次方程,解方程即可得出结论【解答】解:点A2,3在反比例函数y=k0的图象上,k=2×3=6点Bm,6在反比例函数y=k0的图象上,k=6=6m,解得:m=1故答案为:1【点评】此题考查了反比例函数图象上点的坐标特征,解题的关键是求出k值此题属于根底题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征得出与点的坐标有关的方程是关键7.2022·广东深圳如图,四边形是平行四边形,点C在x轴的负半轴上,将 ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上.假设点D在反比例函数的图像上,那么k的值为_.答案:考点:平行四边形的性质,反比例函数。解析:如图,作DM轴由题意BAO=OAF, AO=AF, ABOC所以BAO=AOF=AFO=OAFAOF=60°=DOMOD=AD-OA=AB-OA=6-2=4MO=2, MD=D(-2,-)k=-2×=8. (2022年浙江省丽水市)如图,一次函数y=x+b与反比例函数y=x0的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AEx轴于点E,交OB于点F,设点A的横坐标为m1b=m+用含m的代数式表示;2假设SOAF+S四边形EFBC=4,那么m的值是【考点】反比例函数与一次函数的交点问题【分析】1根据待定系数法点A的纵坐标相等列出等式即可解决问题2作AMOD于M,BNOC于N记AOF面积为S,那么OEF面积为2S,四边形EFBN面积为4S,OBC和OAD面积都是62S,ADM面积为42S=22s,所以SADM=2SOEF,推出EF=AM=NB,得B2m,代入直线解析式即可解决问题【解答】解:1点A在反比例函数y=x0的图象上,且点A的横坐标为m,点A的纵坐标为,即点A的坐标为m,令一次函数y=x+b中x=m,那么y=m+b,m+b=即b=m+故答案为:m+2作AMOD于M,BNOC于N反比例函数y=,一次函数y=x+b都是关于直线y=x对称,AD=BC,OD=OC,DM=AM=BN=CN,记AOF面积为S,那么OEF面积为2S,四边形EFBN面积为4S,OBC和OAD面积都是62S,ADM面积为42S=22s,SADM=2SOEF,EF=AM=NB,点B坐标2m,代入直线y=x+m+,=2m=m+,整理得到m2=2,m0,m=故答案为9. 2022年浙江省宁波市如图,点A为函数y=x0图象上一点,连结OA,交函数y=x0的图象于点B,点C是x轴上一点,且AO=AC,那么ABC的面积为6【考点】反比例函数的图象;三角形的面积;等腰三角形的性质【专题】推理填空题【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到ABC的面积【解答】解:设点A的坐标为a,点B的坐标为b,点C是x轴上一点,且AO=AC,点C的坐标是2a,0,设过点O0,0,Aa,的直线的解析式为:y=kx,解得,k=,又点Bb,在y=上,解得,或舍去,SABC=SAOCSOBC=,故答案为:6【点评】此题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件10. 2022年浙江省衢州市如图,正方形ABCD的顶点A,B在函数y=x0的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变1当k=2时,正方形ABCD的边长等于2当变化的正方形ABCD与1中的正方形ABCD有重叠局部时,k的取值范围是x18【考点】反比例函数图象上点的坐标特征;反比例函数的性质;正方形的性质【分析】1过点A作AEy轴于点E,过点Bx轴于点F,由正方形的性质可得出“AD=DC,ADC=90°,通过证AEDDOC可得出“OD=EA,OC=ED,设OD=a,OC=b,由此可表示出点A的坐标,同理可表示出B的坐标,利用反比例函数图象上点的坐标特征即可得出关于a、b的二元二次方程组,解方程组即可得出a、b值,再由勾股定理即可得出结论;2由1可知点A、B、C、D的坐标,利用待定系数法即可求出直线AB、CD的解析式,设点A的坐标为m,2m,点D坐标为0,n,找出两正方形有重叠局部的临界点,由点在直线上,即可求出m、n的值,从而得出点A的坐标,再由反比例函数图象上点的坐标特征即可得出k的取值范围【解答】解:1如图,过点A作AEy轴于点E,过点Bx轴于点F,那么AED=90°四边形ABCD为正方形,AD=DC,ADC=90°,ODC+EDA=90°ODC+OCD=90°,EDA=OCD在AED和DOC中,AEDDOCAASOD=EA,OC=ED同理BFCCOD设OD=a,OC=b,那么EA=FC=OD=a,ED=FB=OC=b,即点Aa,a+b,点Ba+b,b点A、B在反比例函数y=的图象上,解得:或舍去在RtCOD中,COD=90°,OD=OC=1,CD=故答案为:2设直线AB解析式为y=k1x+b1,直线CD解析式为y=k2+b2,点A1,2,点B2,1,点C1,0,点D0,1,有和,解得:和直线AB解析式为y=x+3,直线CD解析式为y=x+1设点A的坐标为m,2m,点D坐标为0,n当A点在直线CD上时,有2m=m+1,解得:m=,此时点A的坐标为,k=×=;当点D在直线AB上时,有n=3,此时点A的坐标为3,6,k=3×6=18综上可知:当变化的正方形ABCD与1中的正方形ABCD有重叠局部时,k的取值范围为x18故答案为:x1811. 2022年浙江省温州市如图,点A,B在反比例函数y=k0的图象上,ACx轴,BDx轴,垂足C,D分别在x轴的正、负半轴上,CD=k,AB=2AC,E是AB的中点,且BCE的面积是ADE的面积的2倍,那么k的值是【考点】反比例函数系数k的几何意义【分析】根据三角形面积间的关系找出2SABD=SBAC,设点A的坐标为m,点B的坐标为n,结合CD=k、面积公式以及AB=2AC即可得出关于m、n、k的三元二次方程组,解方程组即可得出结论【解答】解:E是AB的中点,SABD=2SADE,SBAC=2SBCE,又BCE的面积是ADE的面积的2倍,2SABD=SBAC设点A的坐标为m,点B的坐标为n,那么有,解得:,或舍去故答案为:122022·山东烟台如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,那么k的值为6【考点】反比例函数系数k的几何意义;菱形的性质【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k的值即可【解答】解:连接AC,交y轴于点D,四边形ABCO为菱形,ACOB,且CD=AD,BD=OD,菱形OABC的面积为12,CDO的面积为3,|k|=6,反比例函数图象位于第二象限,k0,那么k=6故答案为:6132022·山西点m-1,m-3,是反比例函数图象上的两点,那么 > 填“>或“=或“<考点:反比函数的增减性分析:由反比函数m<0,那么图象在第二四象限分别都是y随着x的增大而增大m<0,m-1<0,m-3<0,且m-1>m-3,从而比较y的大小解答:在反比函数中,m<0,m-1<0,m-3<0,在第四象限y随着x的增大而增大且m-1>m-3,所以 > 142022·上海函数y=的定义域是x2【考点】函数自变量的取值范围【分析】直接利用分式有意义的条件得出答案【解答】解:函数y=的定义域是:x2故答案为:x2【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键152022·上海反比例函数y=k0,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k0【考点】反比例函数的性质【分析】直接利用当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【解答】解:反比例函数y=k0,如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,k的取值范围是:k0故答案为:k0【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键162022·江苏无锡假设点A1,3,Bm,3在同一反比例函数的图象上,那么m的值为1【考点】反比例函数图象上点的坐标特征【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m的一元一次方程,解方程即可得出结论【解答】解:点A1,3,Bm,3在同一反比例函数的图象上,1×3=3m,解得:m=1故答案为:1172022江苏省扬州如图,点A在函数y=x0的图象上,且OA=4,过点A作ABx轴于点B,那么ABO的周长为2+4【考点】反比例函数图象上点的坐标特征【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出ABOB的值,根据配方法求出AB+OB2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论【解答】解:点A在函数y=x0的图象上,设点A的坐标为n,n0在RtABO中,ABO=90°,OA=4,OA2=AB2+OB2,又ABOB=n=4,AB+OB2=AB2+OB2+2ABOB=42+2×4=24,AB+OB=2,或AB+OB=2舍去CABO=AB+OB+OA=2+4故答案为:2+4182022呼和浩特函数y=,当自变量的取值为1x0或x2,函数值y的取值y1或y0【考点】反比例函数的性质【分析】画出图形,先计算当x=1和x=2时的对应点的坐标,并描出这两点,根据图象写出y的取值【解答】解:当x=1时,y=1,当x=2时,y=,由图象得:当1x0时,y1,当x2时,y0,故答案为:y1或y019(2022大连,10,3分)假设反比例函数y=的图象经过点1,6,那么k的值为【考点】反比例函数图象上点的坐标特征【分析】直接把点1,6代入反比例函数y=,求出k的值即可【解答】解:反比例函数y=的图象经过点1,6,k=1×6=6故答案为:6【点评】此题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键三、解答题12022·黑龙江大庆如图,P1、P2是反比例函数y=k0在第一象限图象上的两点,点A1的坐标为4,0假设P1OA1与P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点1求反比例函数的解析式2求P2的坐标根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值【考点】反比例函数与一次函数的交点问题;等腰直角三角形【分析】1先根据点A1的坐标为4,0,P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;2先根据P2A1A2为等腰直角三角形,将P2的坐标设为4+a,a,并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围【解答】解:1过点P1作P1Bx轴,垂足为B点A1的坐标为4,0,P1OA1为等腰直角三角形OB=2,P1B=OA1=2P1的坐标为2,2将P1的坐标代入反比例函数y=k0,得k=2×2=4反比例函数的解析式为2过点P2作P2Cx轴,垂足为CP2A1A2为等腰直角三角形P2C=A1C设P2C=A1C=a,那么P2的坐标为4+a,a将P2的坐标代入反比例函数的解析式为,得a=,解得a1=,a2=舍去P2的坐标为,在第一象限内,当2x2+时,一次函数的函数值大于反比例函数的值【点评】此题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是根据等腰直角三角形的性质求得点P1和P2的坐标等腰直角三角形是一种特殊的三角形,具备等腰三角形和直角三角形的所有性质2. 2022·湖北黄冈总分值8分如图,点A(1, a)是反比例函数y= -的图像上一点,直线y= -x+与反比例函数y= -的图像在第四象限的交点为B.(1)求直线AB的解析式;(2)动点P(x, o)在x轴的正半轴上运动,当线段PA与线段PB之差到达最大时,求点P的坐标.第2题【考点】反比例函数,一次函数,最值问题.【分析】1因为点A(1, a)是反比例函数y= -的图像上一点,把A(1, a)代入y=中, 求出a的值,即得点A的坐标;又因为直线y= -x+与反比例函数y= -的图像在第四象限的交点为B,可求出点B的坐标;设直线AB的解析式为y=kx+b,将A,B的坐标代入即可求出直线AB的解析式;(2) 当两点位于直线的同侧时,直接连接两点并延长与直线相交,那么两线段的差的绝对值最大。连接A,B,并延长与x轴交于点P,即当P为直线AB与x轴的交点时,PAPB最大.【解答】解:1把A(1, a)代入y=中,得a=3. 1分A(1, 3). .2分 又B,D是y= x+与y=的两个交点,3分B(3, 1). .4分 设直线AB的解析式为y=kx+b, 由A(1, 3),B(3, 1),解得 k=1,b=4.5分直线AB的解析式为y=x4. .6分 2当P为直线AB与x轴的交点时,PAPB最大7分 由y=0, 得x=4,P(4, 0). .8分3. 2022·湖北咸宁此题总分值8分如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图像交于点Am,2,将直线y=2x向下平移后与反比例函数y=在第一象限内的图像交于点P,且POA的面积为2.1求k的值;2求平移后的直线的函数解析式.【考点】反比例函数与一次函数的综合题,平移.【分析】1将点A(m,2)代入y=2x,可求得m的值,得出A点的坐标,再代入反比例函数y=,即可求出k的值; 2设平移后的直线与y轴交于点B,连接AB,那么SAOB=SPOA=2【解答】解:(1)点A(m,2)在直线y=2x上,2=2m,m=1,点A1,2.