欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新课标2022版高考数学二轮复习专题五解析几何第1讲直线与圆练习理新人教A版.doc

    • 资源ID:18789350       资源大小:103KB        全文页数:5页
    • 资源格式: DOC        下载积分:6金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要6金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新课标2022版高考数学二轮复习专题五解析几何第1讲直线与圆练习理新人教A版.doc

    第1讲直线与圆一、选择题1已知直线l1过点(2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为()A(3,)B(2,)C(1,) D解析:选C直线l1的斜率k1tan 30°,因为直线l2与直线l1垂直,所以直线l2的斜率k2,所以直线l1的方程为y(x2),直线l2的方程为y(x2),联立解得即直线l1与直线l2的交点坐标为(1,)2圆C与x轴相切于T(1,0),与y轴正半轴交于A、B两点,且|AB|2,则圆C的标准方程为()A(x1)2(y)22B(x1)2(y2)22C(x1)2(y)24D(x1)2(y)24解析:选A由题意得,圆C的半径为,圆心坐标为(1,),所以圆C的标准方程为(x1)2(y)22,故选A3已知圆M:x2y22ay0(a>0)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()A内切 B相交C外切 D相离解析:选B圆M:x2y22ay0(a>0)可化为x2(ya)2a2,由题意,M(0,a)到直线xy0的距离d,所以a22,解得a2.所以圆M:x2(y2)24,所以两圆的圆心距为,半径和为3,半径差为1,故两圆相交4(2019·皖南八校联考)圆C与直线2xy110相切,且圆心C的坐标为(2,2),设点P的坐标为(1,y0)若在圆C上存在一点Q,使得CPQ30°,则y0的取值范围是()A, B1,5C2,2 D22,22解析:选C由点C(2,2)到直线2xy110的距离为,可得圆C的方程为(x2)2(y2)25.若存在这样的点Q,当PQ与圆C相切时,CPQ30°,可得sinCPQsin 30°,即CP2,则2,解得2y02.故选C5在平面直角坐标系内,过定点P的直线l:axy10与过定点Q的直线m:xay30相交于点M,则|MP|2|MQ|2()A BC5 D10解析:选D由题意知P(0,1),Q(3,0),因为过定点P的直线axy10与过定点Q的直线xay30垂直,所以MPMQ,所以|MP|2|MQ|2|PQ|29110,故选D6(一题多解)(2019·河南郑州模拟)在平面直角坐标系中,O为坐标原点,直线xky10与圆C:x2y24相交于A,B两点,若点M在圆C上,则实数k的值为()A2 B1C0 D1解析:选C法一:设A(x1,y1),B(x2,y2),由得(k21)y22ky30,则4k212(k21)>0,y1y2,x1x2k(y1y2)2,因为,故M,又点M在圆C上,故4,解得k0.法二:由直线与圆相交于A,B两点,且点M在圆C上,得圆心C(0,0)到直线xky10的距离为半径的一半,为1,即d1,解得k0.二、填空题7过点(,0)引直线l与曲线y相交于A,B两点,O为坐标原点,当AOB的面积取最大值时,直线l的斜率等于_解析:令P(,0),如图,易知|OA|OB|1,所以SAOB|OA|·|OB|·sinAOBsinAOB,当AOB90°时,AOB的面积取得最大值,此时过点O作OHAB于点H,则|OH|,于是sinOPH,易知OPH为锐角,所以OPH30°,则直线AB的倾斜角为150°,故直线AB的斜率为tan 150°.答案:8已知圆O:x2y24到直线l:xya的距离等于1的点至少有2个,则实数a的取值范围为_解析:由圆的方程可知圆心为(0,0),半径为2.因为圆O到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d<r121,即d<3,解得a(3,3)答案:(3,3)9(2019·高考浙江卷)已知圆C的圆心坐标是(0,m),半径长是r.若直线2xy30与圆C相切于点A(2,1),则m_,r_解析:法一:设过点A(2,1)且与直线2xy30垂直的直线方程为l:x2yt0,所以22t0,所以t4,所以l:x2y40.令x0,得m2,则r.法二:因为直线2xy30与以点(0,m)为圆心的圆相切,且切点为A(2,1),所以×21,所以m2,r.答案:2三、解答题10已知点M(1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍(1)求曲线E的方程;(2)已知m0,设直线l1:xmy10交曲线E于A,C两点,直线l2:mxym0交曲线E于B,D两点当CD的斜率为1时,求直线CD的方程解:(1)设曲线E上任意一点的坐标为(x,y),由题意得·,整理得x2y24x10,即(x2)2y23为所求(2)由题意知l1l2,且两条直线均恒过点N(1,0)设曲线E的圆心为E,则E(2,0),设线段CD的中点为P,连接EP,ED,NP,则直线EP:yx2.设直线CD:yxt,由解得点P,由圆的几何性质,知|NP|CD|,而|NP|2,|ED|23,|EP|2,所以3,整理得t23t0,解得t0或t3,所以直线CD的方程为yx或yx3.11在平面直角坐标系xOy中,曲线yx2mx2与x轴交于A,B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值解:(1)不能出现ACBC的情况,理由如下:设A(x1,0),B(x2,0),则x1,x2满足x2mx20,所以x1x22.又C的坐标为(0,1),故AC的斜率与BC的斜率之积为·,所以不能出现ACBC的情况(2)证明:BC的中点坐标为(,),可得BC的中垂线方程为yx2(x)由(1)可得x1x2m,所以AB的中垂线方程为x.联立又xmx220,可得所以过A,B,C三点的圆的圆心坐标为(,),半径r.故圆在y轴上截得的弦长为23,即过A,B,C三点的圆在y轴上截得的弦长为定值12在平面直角坐标系xOy中,点A(0,3),直线l:y2x4,设圆C的半径为1,圆心在直线l上(1)若圆心C也在直线yx1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|2|MO|,求圆心C的横坐标a的取值范围解:(1)因为圆心在直线l:y2x4上,也在直线yx1上,所以解方程组得圆心C(3,2),又因为圆C的半径为1,所以圆C的方程为(x3)2(y2)21,又因为点A(0,3),显然过点A,圆C的切线的斜率存在,设所求的切线方程为ykx3,即kxy30,所以1,解得k0或k,所以所求切线方程为y3或yx3,即y30或3x4y120.(2)因为圆C的圆心在直线l:y2x4上,所以设圆心C为(a,2a4),又因为圆C的半径为1,则圆C的方程为(xa)2(y2a4)21.设M(x,y),又因为|MA|2|MO|,则有2,整理得x2(y1)24,其表示圆心为(0,1),半径为2的圆,设为圆D,所以点M既在圆C上,又在圆D上,即圆C与圆D有交点,所以2121,解得0a,所以圆心C的横坐标a的取值范围为.- 5 -

    注意事项

    本文(新课标2022版高考数学二轮复习专题五解析几何第1讲直线与圆练习理新人教A版.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开