欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版.doc

    • 资源ID:18883816       资源大小:1.27MB        全文页数:21页
    • 资源格式: DOC        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版.doc

    一、选择题1(2017四川省绵阳市)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a1,第2幅图形中“”的个数为a2,第3幅图形中“”的个数为a3,以此类推,则的值为()ABCD【答案】C考点:1规律型:图形的变化类;2综合题2(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图位置,继续绕右下角的顶点按顺时针方向旋转90°至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A2017B2034C3024D3026【答案】D考点:1轨迹;2矩形的性质;3旋转的性质;4规律型;5综合题3(2017江苏省连云港市)如图所示,一动点从半径为2的O上的A0点出发,沿着射线A0O方向运动到O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到O上的点A4处;按此规律运动到点A2017处,则点A2017与点A0间的距离是()A4BC2D0【答案】A【解析】试题分析:如图,O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,2017÷6=3361,按此规律运动到点A2017处,A2017与A1重合,OA2017=2R=4故选A来源:学|科|网Z|X|X|K考点:1规律型:图形的变化类;2综合题学科*网4(2017重庆市B卷)下列图象都是由相同大小的按一定规律组成的,其中第个图形中一共有4颗,第个图形中一共有11颗,第个图形中一共有21颗,按此规律排列下去,第个图形中的颗数为()A116B144C145D150【答案】B【解析】试题分析:4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,第个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144故选B考点:规律型:图形的变化类二、填空题5(2017山东省济宁市)请写出一个过点(1,1),且与x轴无交点的函数解析式: 【答案】(答案不唯一)考点:1反比例函数的性质;2一次函数的性质;3正比例函数的性质;4二次函数的性质;5开放型6(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是 【答案】考点:1正多边形和圆;2规律型;3综合题三、解答题7(2017四川省南充市)如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF=AB(1)求证:EFAG;(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EFAG是否成立(只写结果,不需说明理由)?(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当,求PAB周长的最小值【答案】(1)证明见解析;(2)成立;(3)【解析】试题分析:(1)由正方形的性质得出AD=AB,EAF=ABG=90°,证出,得出AEFBAG,由相似三角形的性质得出AEF=BAG,再由角的互余关系和三角形内角和定理证出AOE=90°即可;(2)证明AEFBAG,得出AEF=BAG,再由角的互余关系和三角形内角和定理即可得出结论;(2)解:成立;理由如下:根据题意得: =, =,=,又EAF=ABG,AEFBAG,AEF=BAG,BAG+EAO=90°,AEF+EAO=90°,AOE=90°,EFAG;来源:Zxxk.Com(3)解:过O作MNAB,交AD于M,BC于N,如图所示:则MNAD,MN=AB=4,P是正方形ABCD内一点,当SPAB=SOAB,点P在线段MN上,当P为MN的中点时,PAB的周长最小,此时PA=PB,PM=MN=2,连接EG、PA、PB,则EGAB,EG=AB=4,AOFGOE,=,MNAB, =,AM=AE=×2=,由勾股定理得:PA= =,PAB周长的最小值=2PA+AB=考点:1四边形综合题;2探究型;3动点型;4最值问题8(2017四川省达州市)如图,在ABC中,点O是边AC上一个动点,过点O作直线EFBC分别交ACB、外角ACD的平分线于点E、F(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出OEC=OCE,OFC=OCF,证出OE=OC=OF,ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形理由如下:连接AE、AF,如图所示:当O为AC的中点时,AO=CO,EO=FO,四边形AECF是平行四边形,ECF=90°,平行四边形AECF是矩形学&科网考点:1矩形的判定;2平行线的性质;3等腰三角形的判定与性质;4探究型;5动点型9(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:,(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)已知点M(2,1),N(3,5),则线段MN长度为 ;直接写出以点A(2,2),B(2,0),C(3,1),D为顶点的平行四边形顶点D的坐标: ;拓展:(3)如图3,点P(2,n)在函数(x0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使PEF的周长最小,简要叙述作图方法,并求出周长的最小值【答案】(1)答案见解析;(2);(3,3)或(7,1)或(1,3);(3)【解析】试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足PEF的周长最小,利用两点间距离公式可求得其周长的最小值试题解析:(1)P1(x1,y1),P2(x2,y2),Q1Q2=OQ2OQ1=x2x1,Q1Q=,OQ=OQ1+Q1Q=x1+= ,PQ为梯形P1Q1Q2P2的中位线,PQ= =,即线段P1P2的中点P(x,y)P的坐标公式为x=,y=;(2)M(2,1),N(3,5),MN=,故答案为:;A(2,2),B(2,0),C(3,1),当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(1)=2,解得x=3,y=3,此时D点坐标为(3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(1,3),综上可知D点坐标为(3,3)或(7,1)或(1,3),故答案为:(3,3)或(7,1)或(1,3);(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,PE+PF+EF=ME+EF+NF=MN,此时PEF的周长即为MN的长,为最小,设R(x,),由题意可知OR=OS=2,PR=PS=n,=2,解得x=(舍去)或x=,R(,),解得n=1,P(2,1),N(2,1),设M(x,y),则=, =,解得x=,y=,M(,),MN= =,即PEF的周长的最小值为考点:1一次函数综合题;2阅读型;3分类讨论;4最值问题;5探究型;6压轴题10(2017山东省枣庄市)如图,在ABC中,C=90°,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F(1)试判断直线BC与O的位置关系,并说明理由;(2)若BD=,BF=2,求阴影部分的面积(结果保留)【答案】(1)BC与O相切;(2) 【解析】试题分析:(1)连接OD,证明ODAC,即可证得ODB=90°,从而证得BC是圆的切线;试题解析:(1)BC与O相切证明:连接ODAD是BAC的平分线,BAD=CAD又OD=OA,OAD=ODA,CAD=ODA,ODAC,ODB=C=90°,即ODBC又BC过半径OD的外端点D,BC与O相切(2)设OF=OD=x,则OB=OF+BF=x+2,由勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,OB=2+2=4,RtODB中,OD=OB,B=30°,DOB=60°,S扇形AOB= =,则阴影部分的面积为SODBS扇形DOF=×2×=故阴影部分的面积为考点:1直线与圆的位置关系;2扇形面积的计算;3探究型学*科网11(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分AEC时,设AB=a,BP=b,求a:b及AEC的度数【答案】(1)证明见解析;(2)ACE是直角三角形;(3):1,45°【解析】试题分析:(1)由正方形的性质证明APECFE,可得结论;(2)分别证明PAE=45°和BAC=45°,则CAE=90°,即ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,由角平分线的逆定理得:HCG=BCG,由平行线的内错角得:AEC=ACB=45°试题解析:(1)四边形ABCD和四边形BPEF是正方形,AB=BC,BP=BF,AP=CF,在APE和CFE中,AP=CF,P=F,PE=EF,APECFE,EA=EC;(3)设CE交AB于G,EP平分AEC,EPAG,AP=PG=ab,BG=a(2a2b)=2ba,PECF,即,解得:a=b,a:b=:1,作GHAC于H,CAB=45°,HG=AG=(2b2b)=(2)b,又BG=2ba=(2)b,GH=GB,GHAC,GBBC,HCG=BCG,PECF,PEG=BCG,AEC=ACB=45°考点:1四边形综合题;2探究型;3变式探究12(2017山西省)如图,ABC内接于O,且AB为O的直径,ODAB,与AC交于点E,与过点C的O的切线交于点D(1)若AC=4,BC=2,求OE的长(2)试判断A与CDE的数量关系,并说明理由【答案】(1);(2)CDE=2A【解析】试题分析:(1)在RtABC中,由勾股定理得到AB的长,从而得到半径AO 再由AOEACB,得到OE的长;(2)CDE=2A理由如下:连结OC,OA=OC,1=A,CD是O的切线,OCCD,OCD=90°,2+CDE=90°,ODAB,2+3=90°,3=CDE3=A+1=2A,CDE=2A考点:1切线的性质;2探究型;3和差倍分13(2017江苏省盐城市)如图,矩形ABCD中,ABD、CDB的平分线BE、DF分别交边AD、BC于点E、F(1)求证:四边形BEDF是平行四边形;(2)当ABE为多少度时,四边形BEDF是菱形?请说明理由【答案】(1)证明见解析;(2)ABE=30°【解析】试题分析:(1)由矩形可得ABD=CDB,结合BE平分ABD、DF平分BDC得EBD=FDB,即可知BEDF,根据ADBC即可得证;(2)当ABE=30°时,四边形BEDF是菱形,BE平分ABD,ABD=2ABE=60°,EBD=ABE=30°,四边形ABCD是矩形,A=90°,EDB=90°ABD=30°,EDB=EBD=30°,EB=ED,又四边形BEDF是平行四边形,四边形BEDF是菱形考点:1矩形的性质;2平行四边形的判定与性质;3菱形的判定;4探究型学科&网14(2017江苏省盐城市)如图,在平面直角坐标系中,RtABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,F与y轴相交于另一点G(1)求证:BC是F的切线;来源:学科网(2)若点A、D的坐标分别为A(0,1),D(2,0),求F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论【答案】(1)证明见解析;(2);(3)AG=AD+2CD【解析】试题分析:(1)连接EF,根据角平分线的定义、等腰三角形的性质得到FEA=EAC,得到FEAC,根据平行线的性质得到FEB=C=90°,证明结论;(2)连接FD,设F的半径为r,根据勾股定理列出方程,解方程即可;(2)解:连接FD,设F的半径为r,则r2=(r1)2+22,解得,r=,即F的半径为;(3)解:AG=AD+2CD证明:作FRAD于R,则FRC=90°,又FEC=C=90°,四边形RCEF是矩形,EF=RC=RD+CD,FRAD,AR=RD,EF=RD+CD=AD+CD,AG=2FE=AD+2CD考点:1圆的综合题;2探究型15(2017江苏省盐城市)(探索发现】如图,是一张直角三角形纸片,B=60°,小明想从中剪出一个以B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 【拓展应用】如图,在ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 (用含a,h的代数式表示)【灵活应用】如图,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(B为所剪出矩形的内角),求该矩形的面积【实际应用】如图,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】1944【拓展应用】:由APNABC知,可得PN=aPQ,设PQ=x,由S矩形PQMN=PQPN,据此可得;【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证AEFHED、CDGHDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;【实际应用】:延长BA、CD交于点E,过点E作EHBC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得试题解析:【探索发现】EF、ED为ABC中位线,EDAB,EFBC,EF=BC,ED=AB,又B=90°,四边形FEDB是矩形,则 =,故答案为:;【拓展应用】PNBC,APNABC,即,PN=aPQ,设PQ=x,则S矩形PQMN=PQPN=x(ax)= =,当PQ=时,S矩形PQMN最大值为,故答案为:;【灵活应用】如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,由题意知四边形ABCH是矩形,AB=32,BC=40,AE=20,CD=16,EH=20、DH=16,AE=EH、CD=DH,在AEF和HED中,FAE=DHE,AE=AH,AEF=HED,AEFHED(ASA),AF=DH=16,同理CDGHDE,CG=HE=20,BI=(AB+AF)=24,BI=2432,中位线IK的两端点在线段AB和DE上,过点K作KLBC于点L,由【探索发现】知矩形的最大面积为×BGBF=×(40+20)×(32+16)=720,答:该矩形的面积为720;【实际应用】如图2,延长BA、CD交于点E,过点E作EHBC于点H,tanB=tanC=,B=C,EB=EC,BC=108cm,且EHBC,BH=CH=BC=54cm,tanB=,EH=BH=×54=72cm,在RtBHE中,BE=90cm,AB=50cm,AE=40cm,BE的中点Q在线段AB上,CD=60cm,ED=30cm,CE的中点P在线段CD上,中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BCEH=1944cm2答:该矩形的面积为1944cm2考点:1四边形综合题;2阅读型;3探究型;4最值问题;5压轴题16(2017江苏省连云港市)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边ABAC上,且AD=AE,连接BE、CD,交于点F(1)判断ABE与ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC【答案】(1)ABE=ACD;(2)证明见解析【解析】试题分析:(1)证得ABEACD后利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论试题解析:(1)ABE=ACD;在ABE和ACD中,AB=AC,A=A,AE=AD,ABEACD,ABE=ACD;(2)AB=AC,ABC=ACB,由(1)可知ABE=ACD,FBC=FCB,FB=FC,AB=AC,点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC考点:1等腰三角形的性质;2线段垂直平分线的性质;3探究型17(2017江苏省连云港市)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:(S表示面积)实验探究:某数学实验小组发现:若图1中AHBF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1如图2,当AHBF时,若将点G向点C靠近(DGAE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S如图3,当AHBF时,若将点G向点D靠近(DGAE),请探索S四边形EFGH、S矩形ABCD与S之间的数量关系,并说明理由迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AHBF,AEDG,S四边形EFGH=11,HF=,求EG的长(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值【答案】问题呈现:;实验探究:;迁移应用:(1)EG=;(2)【解析】试题分析:问题呈现:只要证明SHGE=S矩形AEGD,同理SEGF=S矩形BEGC,由此可得S四边形EFGH=SHGE+SEFG=S矩形BEGC;实验探究:结论:2S四边形EFGH=S矩形ABCD根据=, =, =, =,即可证明;迁移应用:(1)利用探究的结论即可解决问题(2)分两种情形探究即可解决问题来源:Zxxk.Com试题解析:问题呈现:证明:如图1中,四边形ABCD是矩形,ABCD,A=90°,AE=DG,四边形AEGD是矩形,SHGE=S矩形AEGD,同理SEGF=S矩形BEGC,S四边形EFGH=SHGE+SEFG=S矩形BEGC实验探究:结论:2S四边形EFGH=S矩形ABCD理由: =, =, =, =,S四边形EFGH=+,2S四边形EFGH=2+2+2+22,2S四边形EFGH=S矩形ABCD迁移应用:解:(1)如图4中,2S四边形EFGH=S矩形ABCD, =252×11=3=A1B1A1D1,正方形的面积为25,边长为5,A1D12=HF252=2925=4,A1D1=2,A1B1=,EG2=A1B12+52=,EG=(2)2S四边形EFGH=S矩形ABCD+,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大如图51中,当G与C重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大此时矩形A1B1C1D1面积=1×(2)=如图52中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大此时矩形A1B1C1D1面积=21=2,2,矩形EFGH的面积最大值=考点:1四边形综合题;2最值问题;3阅读型;4探究型;5压轴题18(2017湖北省襄阳市)如图,在ABC中,ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在EDF绕点D旋转的过程中:探究三条线段AB,CE,CF之间的数量关系,并说明理由;若CE=4,CF=2,求DN的长【答案】(1)证明见解析;(2)AB2=4CECF;【解析】试题分析:(1)根据等腰直角三角形的性质得到BCD=ACD=45°,BCE=ACF=90°,于是得到DCE=DCF=135°,根据全等三角形的性质即可的结论;(2)解:DCF=DCE=135°,CDF+F=180°135°=45°,CDF+CDE=45°,F=CDE,CDFCED,即CD2=CECF,ACB=90°,AC=BC,AD=BD,CD=AB,AB2=4CECF;来源:学.科.网如图,过D作DGBC于G,则DGN=ECN=90°,CG=DG,当CE=4,CF=2时,由CD2=CECF得CD=,在RtDCG中,CG=DG=CDsinDCG=×sin45°=2,ECN=DGN,ENC=DNG,CENGDN, =2,GN=CG=,DN= =考点:1几何变换综合题;2探究型;3和差倍分;4综合题

    注意事项

    本文(2021-2022年收藏的精品资料专题12 探索性问题第03期中考数学试题分项版解析汇编解析版.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开