欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    对数的运算2.ppt

    • 资源ID:18889169       资源大小:464.01KB        全文页数:11页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    对数的运算2.ppt

    2.2.1 对数与对数运算 第三课时第三课时 换底公式及对数运算的应用换底公式及对数运算的应用 问题提出问题提出.(1 1) (2 2) (3 3)loglognaaMnMlogloglog ()aaaMNM NlogloglogaaaMMNN(1 1) ; ; (2 2) ; ; (3 3) . .log1aa log 10alogaNaN1.1.对数运算有哪三条基本性质?对数运算有哪三条基本性质?2.2.对数运算有哪三个常用结论?对数运算有哪三个常用结论? 3.3.同底数的两个对数可以进行加、减同底数的两个对数可以进行加、减运算,可以进行乘、除运算吗?运算,可以进行乘、除运算吗? 4.4.由由 得得 ,但这只,但这只是一种表示,如何求得是一种表示,如何求得x x的值?的值? 181.0113x1.0118log13x 5log3log5log, 5log3223即x2lg3lg3log.2能知识探究(一):知识探究(一):对数的换底公式对数的换底公式 思考思考2:2:你能用你能用lg2lg2和和lg3lg3表示表示loglog2 23 3吗?吗? 思考思考1:1:假设假设 ,则,则 ,从而有,从而有 .进一步可得到什么结论?进一步可得到什么结论? 22log 5log 3x222log 5log 3log 3xx35x思考思考3:3:一般地,如果一般地,如果a a0 0,且,且a1a1;c c0 0,且,且c1c1;b b0 0,那么,那么 与哪个与哪个对数相等?如何证明这个结论?对数相等?如何证明这个结论? loglogccbabab结论acclogloglog:axbxab令证明ccccloglogloglog:bxababaxxcclogloglogbabacclogloglog思考思考4:4:我们把我们把 (a a0 0,且,且a1a1;c c0 0,且,且c1c1;b b0 0)叫做对数换底公式,该公式有什么特征?叫做对数换底公式,该公式有什么特征?logloglogcacbba一个对数可以用同底数一个对数可以用同底数的两个对数的商来表示的两个对数的商来表示思考思考6:6:换底公式在对数运算中有什么意换底公式在对数运算中有什么意 义和作用?义和作用? 思考思考5:5:通过查表可得任何一个正数的常用通过查表可得任何一个正数的常用对数,利用换底公式如何求对数,利用换底公式如何求 的值?的值? 1.0118log1301. 1lg13lg18lg01. 1lg1318lg1318log01. 1可以利用以可以利用以10为底的对数为底的对数的值来求任何对数值的值来求任何对数值知识探究(二):知识探究(二):换底公式的变式换底公式的变式 思考思考1: 1: 与与 有什么关系?有什么关系? logablogba思考思考2: 2: 与与 有什么关系?有什么关系? lognaNlogaN互为倒数互为倒数NnNaanlog1log思考思考3: 可变形为什么?可变形为什么? )(log)(logNMaaMNlog9103lg32lg52lg33lg227lg32lg8lg9lg:原式解 例例1 1 计算:计算: (1) 1) ; ; 32log9log278)8log4log2(log)5log25log125).(log2(125255842)125lg8lg25lg4lg5lg2lg()8lg5lg4lg25lg2lg125lg(:原式解)5lg32lg35lg22lg25lg2lg()2lg35lg2lg25lg22lg5lg3(135lg2lg32lg35lg13

    注意事项

    本文(对数的运算2.ppt)为本站会员(仙***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开