2021-2022年收藏的精品资料专题15 应用题第04期中考数学试题分项版解析汇编原卷版.doc
-
资源ID:18905492
资源大小:1,017KB
全文页数:12页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022年收藏的精品资料专题15 应用题第04期中考数学试题分项版解析汇编原卷版.doc
一、选择题1. (2017内蒙古通辽第7题)志远要在报纸上刊登广告,一块的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A540元 B1080元 C.1620元 D1800元 2. (2017黑龙江齐齐哈尔第5题)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买( )A16个B17个C33个D34个 3. (2017黑龙江绥化第9题)某楼梯的侧面如图所示,已测得的长约为3.5米, 约为,则该楼梯的高度可表示为( )A米 B米 C米 D米 4. (2017青海西宁第9题) 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为小时,根据题意可列出方程为( )A B C. D5. (2017新疆乌鲁木齐第7题)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木万棵,由于志愿者的加入,实际每天植树比原计划多,结果提前天完成任务,设原计划每天植树万棵,可列方程是 ( )A B C. D 二、填空题1. (2017贵州遵义第16题)明代数学家程大位的算法统宗中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有_两(注:明代时1斤=16两,故有“半斤八两”这个成语)2. (2017辽宁大连第14题)某班学生去看演出,甲种票每张30元,乙种票每张20元.如果36名学生购票恰好用去860元.设甲种票买了张,乙种票买了张,依据题意,可列方程组为 .3. (2017新疆乌鲁木齐第13题)一件衣服售价为元,六折销售,仍可获利,则这件衣服的进价是 元三、解答题1. (2017贵州遵义第25题)为厉行节能减排,倡导绿色出行,今年3月以来“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放 辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值2. (2017湖南株洲第23题)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为其中tan=2,无人机的飞行高度AH为500米,桥的长度为1255米求点H到桥左端点P的距离; 若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB来源:学,科,网3. (2017内蒙古通辽第20题)一汽车从甲地出发开往相距240的乙地,出发后第一小时内按原计划的匀速行驶,1小时后比原来的速度加快,比原计划提前到达乙地,求汽车出发后第1小时内的行驶速度.来源:Z|xx|k.Com4. (2017内蒙古通辽第22题)如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.求(1)单摆的长度();(2)从点摆动到点经过的路径长().5. (2017郴州第21题)某工厂有甲种原料,乙种原料,现用两种原料生产处两种产品共件,已知生产每件产品需甲种原料,乙种原料,且每件产品可获得元;生产每件产品甲种原料,乙种原料,且每件产品可获利润元,设生产产品 件(产品件数为整数件),根据以上信息解答下列问题:(1)生产两种产品的方案有哪几种?(2)设生产这件产品可获利元,写出关于的函数解析式,写出(1)中利润最大的方案,并求出最大利润.6. (2017湖北咸宁第22题) 某公司开发出一款新的节能产品,该产品的成本价位元/件,该产品在正式投放市场前通过代销点进行了为期一个月(天)的试销售,售价为元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线表示日销售量(件)与销售时间(天)之间的函数关系,已知线段表示的函数关系中,时间每增加天,日销售量减少件.第天的日销售量是 件,日销售利润是 元;求与之间的函数关系式,并写出的取值范围;日销售利润不低于元的天数共有多少天?试销售期间,日销售最大利润是多少元?7. (2017湖南常德第23题)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到了多少钱的微信红包?8. (2017湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)9. (2017广西百色第24题)某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?10. (2017哈尔滨第25题)威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?11. (2017黑龙江齐齐哈尔第25题)“低碳环保、绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆小军始终以同一速度骑行,两人行驶的路程(米)与时间(分钟)的关系如图请结合图象,解答下列问题:(1) ; ; ;(2)若小军的速度是120米/分,求小军在图中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是米/分,且在图中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围12. (2017黑龙江绥化第25题)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天? 13. (2017黑龙江绥化第27题)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶两车之间的路程(千米)与轿车行驶时间(小时)的函数图象如图所示请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点的坐标; (3) 请直接写出轿车从乙城返回甲城过程中离甲城的路程(千米)与轿车行驶时间(小时)之间的函数关系式(不要求写出自变量的取值范围)14. (2017湖北孝感第22题) 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有两种型号的健身器可供选择.(1)劲松公司2015年每套型健身器的售价为万元,经过连续两年降价,2017年每套售价为 万元,求每套型健身器年平均下降率 ;(2)2017年市政府经过招标,决定年内采购并安装劲松公司两种型号的健身器材共套,采购专项费总计不超过万元,采购合同规定:每套型健身器售价为万元,每套型健身器售价我 万元.型健身器最多可购买多少套? 安装完成后,若每套型和型健身器一年的养护费分别是购买价的 和 .市政府计划支出 万元进行养护.问该计划支出能否满足一年的养护需要?15. (2017内蒙古呼和浩特第20题)某专卖店有,两种商品已知在打折前,买60件商品和30件商品用了1080元,买50件商品和10件商品用了840元;,两种商品打相同折以后,某人买500件商品和450件商品一共比不打折少花1960元,计算打了多少折?16. (2017青海西宁第27题)首条贯通丝绸之路经济带的高铁线-宝兰客专进入全线拉通试验阶段.宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),如图中的折线表示与之间的函数关系.根据图象进行以下探究:【信息读取】(1)西宁到西安两地相距_千米,两车出发后_小时相遇;(2)普通列车到达终点共需_小时,普通列车的速度是_千米/小时.【解决问题】(3)求动车的速度;(4)普通列车行驶小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西安?来源:学|科|网Z|X|X|K17. (2017上海第22题)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少18. (2017湖南张家界第18题)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?19. (2017湖南张家界第19题)位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像铜像由像体AD和底座CD两部分组成如图,在RtABC中,ABC=70.5°,在RtDBC中,DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°0.943,cos70.5°0.334,tan70.5°2.824)20. (2017辽宁大连第21题)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?21. (2017海南第20题)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米22. (2017海南第22题)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,EAC=130°,求水坝原来的高度BC(参考数据:sin50°0.77,cos50°0.64,tan50°1.2)23. (2017河池第24题)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多元,用元购得的排球数量与用元购得的足球数量相等.排球和足球的单价各是多少元?若恰好用去元,有哪几种购买方案?24. (2017贵州六盘水第24题)甲乙两个施工队在六安(六盘水安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设米.(1)依题意列出二元一次方程组; (2)求出甲乙两施工队每天各铺设多少米?来源:学科网ZXXK25. (2017新疆乌鲁木齐第18题)我国古代数学名著孙子算经中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有个头,从下面看有条腿,问笼中鸡或兔各有多少只?26. (2017新疆乌鲁木齐第21题)一艘渔船位于港口的北偏东方向,距离港口海里处,它沿北偏西方向航行至处突然出现故障,在处等待救援,之间的距离为海里,救援船从港口出发分钟到达处,求救援的艇的航行速度.,结果取整数)来源:Z。xx。k.Com27. (2017新疆乌鲁木齐第22题)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离(千米)与行驶时间(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后与之间的函数关系式;(4)何时两车相距千米.