高支模专项施工方案_3 (2).docx
高支模专项施工方案一、高支模施工单项方案本工程为混凝土框架构造,构造层高有5.5米、6.0米、11.5米等几种,其主体构造模板工程均属高支模施工,本工程以层高11.5米的厂房首层平面构造为例进行高支模的方案编制。根据我司施工部署,我司拟对在承台施工完成后在原场地地面压实的基础上直接施工厂房二层梁、板,高支模支撑架体高度约为12.7米。一、高支模支撑架体布置及构造要求1、支撑架体布置为方便计算,板模取净高最高的二层板支撑体系进行高支模体系的设计计算,梁模取截面尺寸为800*1500mm的二层主梁进行设计计算,其余部位梁、板参照此计算结果进行施工。二层梁、板高支模部位属于大跨构造,柱距为9.0m、18m,最大跨度为18m,根据设计及施工经历,预测本工程主梁截面尺寸约为800*1500mm、350*700mm等,次梁截面尺寸为300*600mm等,板厚为180mm。本工程所使用的模板均为18mm厚胶合板,木枋截面尺寸均为80*80mm,楼板模板底木枋间距为300mm,梁底木枋间距为250mm。架体钢管规格均为48*3.5mmQ235A钢管,纵、横向水平杆步距为1.5m,立杆柱距为0.81.1m。高支模满搭支撑架体由立杆、水平杆、剪刀撑以及连接它们的扣件组成。水平杆、立杆、剪刀撑均采用48*3.5mmQ235A钢管,钢管长度46m,扣件采用直角扣件、旋转扣件及对接扣件,其标准架体构造如下列图所示:22剖面图2、架体构造要求1、立杆考虑首层架空层后施工,所以立杆从地面起开场布置,每根立杆底部应设置10*10*5mm垫铁。立杆接长采用对接扣件连接,对接接头应交织布置。相邻立杆的接头不应设置在同步内,同步内隔一根立杆的两个相隔接头在接头高度方向错开的距离为500mm,各接头中心至主节点的距离不应大于步距的1/3,详细平面布置见高支模支撑架体平面图。2、水平杆首先在满搭架底部距离地面200mm处纵横各设一道扫地杆,然后按纵横两个方向布置水平杆,水平杆步距为1500mm,水平杆与立杆用扣件连接牢固。水平杆的接长应优先采用对接连接,对接接头应交织布置两根相邻水平杆的接头不宜设置在同步或同跨内,不同步或不同跨两个相邻接头在水平方向错开的距离为1000mm,各接头中心至近期主节点的距离不应大于纵距的1/3。当水平杆采用搭接连接时,搭接长度为1m,应等间距设置3个旋转扣件固定,端部扣件盖板边缘至搭接水平杆杆端的距离不小于150mm。由于主梁截面较大,相应荷载亦较大,为保证主梁底部杆件连接牢固,主梁底部的水平杆及找平杆与立杆用双扣件连接,增加抗滑移能力。3、剪刀撑剪刀撑在垂直于楼面梁的两个方向布置,剪刀撑与水平面的夹角为45°60°,剪刀撑排距为6m,剪刀撑跨越立杆的根数为56根。剪刀撑底部斜杆的下端应置于垫板上,严禁悬空,剪刀撑斜杆的连接均采用搭接,搭接长度为1m,用3个旋转扣件固定在与之相交的水平杆或立杆上,旋转扣件中心线至主节点的距离为150mm。4、扣件扣件规格必须与48×3.5mm钢管外径一样,扣件螺旋拧紧扭力矩不应小于40N·m,并不大于65N·m,扣件的开口应朝上或朝内。5、材料要求a、高支模架体采用型号为48×3.5mmQ235A钢管,其力学性能应符合国家现行标准(碳素构造钢)GB700-89中Q235A钢的规定;不得使用严重锈蚀、变形的钢管,钢管使用前应进行调直及防锈处理;b、扣件应采用机械性能不低于KTH330-08的可锻铸铁制作,不得有裂纹、气孔,不应有缩松、砂眼或其他影响使用的铸造缺陷;扣件与钢管的贴合面必须严格整形,应保证与钢管扣紧时接触良好,扣件活动部位应能灵敏转动,旋转扣件的两旋转面间隙应小于1mm;当扣件加紧钢管时,开口处的最小距离应不小于5mm;c、安全网必须使用符合安全部门规定的防火安全网,应有材料合格证。二、模板支撑系统构造计算书1、编写根据(建筑施工扣件式钢管脚手架安全技术技术规程)JGJ130-2001、J84-2001;(建筑构造荷载规范)GB50009-2001;(建筑施工手册)第四版2、荷载取值计算1、荷载取值模板及其支架自重标准值:0.75KN/m2;钢筋砼梁、板自重标准值:25hKN/m2h为梁高或板厚;施工荷载标准值:3.0KN/m2;2、荷载组合取恒荷载分项系数为1.2,活荷载分项系数为1.4,考虑风载风载增大系数为1.1,则有:a、楼板模板面上的竖向荷载设计值为:q=1.1×1.2×0.75+25h+1.4×1.0+2.0·b=33b·h+5.61bKN/m楼板厚度h为180mm,模板宽度b为915mm,则q=10.57KN/m。b、梁底模板面上的竖向荷载沿梁长方向的设计值为:q=1.1×1.2×0.75+25h·b+1.4×3.0b=33b·h+4.2bKN/m梁截面尺寸为b·h=800×1500mm,则q=42.96KN/m。3、楼板模板体系受力计算1、楼板底模受力计算a、力学模型本工程所使用的模板均为18mm厚胶合板,标准单块楼板底模可视为b=915mm,h=18mm的连续梁,由于连续梁计算比拟复杂且按简支梁计算模板受力更不利,计算结果偏于安全,所以按简支梁来建立模板受力模型,取楼板模板底木枋间距为300mm,计算简图如下:q楼板底模受力计算简图b、截面抵抗矩=bh2/6=0.915×0.0182/6=4.94×10-5m3Wzc、截面容许弯距:M=·Wz查表可知:胶合板的抗弯强度为=22.9N/mm2,考虑胶合板的周转使用及局部损坏对强度的影响,取=20N/mm2,则胶合板所能承受的弯矩值为:M=20×103×4.94×10-5=0.99kN·m。d、强度验算胶合板所承受的最大弯矩值Mmax=qL2/8=10.57×0.32/8=0.12kN·mM=1.11kN.m知足要求。e、挠度计算挠度计算公式为Vmax=5qL4/(384EI),根据平整度要求,取V=5mm,模板截面惯性矩I=bh3/12=0.915*0.0183/12=4.45×10-7m4,模板弹性模量E=107kN/m2。则Vmax=5qL4/(384EI)=5×10.57×0.34/384×107×4.45×10-7=0.00025m=0.25mmV=5mm知足要求。2)、木枋受力计算a、木枋有效长度取木枋最大有效长度为:Lmax=1100mm。b、力学模型:简化为简支梁计算。qq板底木枋受力计算简图c、荷载计算本工程中楼板厚度h=180mm,木枋间距为300mm,则有:q=1.1×1.2×0.75+25h+1.4×1.0+2.0×0.3=3.47KN/md、截面特性计算本工程所使用的木枋截面尺寸为80×80mm,则木枋的截面特性计算如下:I=bh3/12=0.08×0.0.083/12=3.41×10-6m4Wz=bh2/6=0.08×0.0.082/6=8.53×10-5m3e、强度验算查表知,木枋抗弯强度fm=15N/mm2,则木枋所能承受的弯矩容许值为:M=fm·Wz=15×8.53×104=1.28×106N·mm=1.28kN·m木枋所承受的最大弯矩值为Mmax=qL2/8=3.47×1.12/8=0.52kN·mM=1.28kN.m知足要求。f、挠度验算挠度计算公式为Vmax=5qL4/(384EI),根据平整度要求,取V=5mm,木枋截面惯性矩I=3.41×10-6m4,木枋弹性模量E=107kN/m2。则Vmax=5qL4/(384EI)=5×3.47×1.24/(384×107×3.41×10-6)=0.0027m=2.7mmV=5mm知足要求。1、4、梁模板体系计算1、胶合板受力计算a、力学模型取梁底木枋间距为250mm,其受力模型及受力简图同楼板模板。b、强度计算胶合板所承受的最大弯矩值Mmax=qL2/8=42.96×0.252/8=0.34kN·mM=0.72kN·m知足要求。c、挠度计算挠度计算公式为Vmax=5qL4/(384EI),根据平整度要求,取V=5mm,胶合板截面惯性矩I=4.45×10-7m4,弹性模量E=107kN/m2。则Vmax=5qL4/(384EI)=5×42.96×0.254/(384×107×4.45×10-7)=0.00049m=0.49mmV=5mm知足要求。2)、木枋受力计算a、木枋有效长度取木枋最大有效长度为:Lmax=600mm。b、力学模型:按两跨连续梁计算。q梁底木枋受力计算简图c、荷载计算梁截面尺寸为800×1500mm,木枋间距为250mm,则有:q=42.96×0.25/0.8=13.43KN/md、强度验算梁底木枋所承受的最大弯矩|MB|=|-qL2/8|=13.43×0.62/8=0.6kN·mM=1.25kN·m知足要求。e、挠度验算挠度计算公式为Vmax=5qL4/(384EI),根据平整度要求,取V=5mm,木枋截面惯性矩I=3.41×10-6m4,木枋弹性模量E=107kN/m2。则Vmax=5qL4/(384EI)=5×13.43×0.64/(384×107×3.41×10-6)=0.00066m=0.66mmV=5mm知足要求。3)、梁底承重水平杆受力计算由立杆平面布置图可知,主梁底承重水平杆跨度不等,最大跨度为550mm,为计算简便以及确保施工安全,取主梁底三条水平杆中中间一根进行受力验算,并将其视为单跨按最大跨度考虑简支梁进行受力验算,其不利受力布置有两种,如下列图所示:FFFFF梁底承重水平杆受力简图1梁底承重水平杆受力简图2a、强度验算查表可知,Q235A钢管的抗拉强度设计值为f=215N/mm2,48×3.5mm钢管的截面惯性矩为:I=D4-d4/64=*484-*414/64=121867mm4=1.22×105mm4。由上可知,木枋传至水平钢管的集中荷载F=1.25×13.43×0.6=10.08KN。由图1可知,RA=RB=3×10.08/2=15.11KN,则水平杆所承受的最大弯矩为:Mmax=15.11×0.275-10.08×0.25=1.64KN·m。由图2可知,RA=RB=2×10.08/2=10.08KN,则水平杆所承受的最大弯矩为:Mmax=10.08×0.15=1.51KN·m。所以图1受力布置更不利,所以取水平钢管所承受的最大弯矩为Mmax=1.64KN·m,则水平杆的截面正应力为:=M·y/2I=1.64×106×24/2×1.22×105=160N/mm2f=215N/mm2知足要求b、挠度验算挠度计算公式为Vmax=Fa3L2-4a2/24EI,根据平整度要求,取V=5mm,钢管截面惯性矩I=1.22×105mm4,钢管弹性模量E=2.06×105N/m2。则Vmax=10.08×103×25×3×5502-4×252/(24×2.06×105×1.22×105)=0.4mmV=5mm知足要求。2、5、立杆受力验算1、强度、稳定性a、力学模型根据扣件钢管脚手架安全技术规范JGJ130-2001及(建筑施工手册)中的钢管扣件支模架中的设计计算方法,将本支模架立杆承载力简化为杆件在一个步距的承载力计算。本工程板底梁侧立杆兼做梁支撑立杆,因而此类立杆或梁底立杆承受的荷载最大,因而仅计算梁侧立杆或梁底立杆。b、荷载计算立杆布置详见梁模支设大样图,将水平杆由受集中力作用集中荷载布置取梁底承重水平杆受力简图1、2的综合布置形式等效为受均布荷载作用,并将水平杆视为三跨连续梁三跨可代表最不利受力布置,立杆受力分析如下列图所示;qFFFFFFFF立杆受力简图支座代表立杆由支座反力等效换算可知q=45.81KN/m42.96KN/m,所以取q=42.96KN/m讲明此力学模型及等效换算是偏于安全的,图中L=550mm,查相关表格可知:主梁中间立杆的所承受的最大荷载值可偏安全的近似取为:Nmax1=NB=0.60+0.5×42.96×0.55=25.99KN主梁两侧立杆所承受的荷载可近似取为:Nmax2=NB+N楼板=0.4×42.96×0.55+0.55×1.0×10.57/0.915=15.80KNc、等效长度计算l01=h+2a=1.5+2×0.3=2.1md、承载力验算查表可得,当主梁两侧支模架体高11.4m时,主梁两侧立杆的承载力Rd=27.34kNF=15.80kN。当主梁底部支模架体高10.0m时,主梁中间立杆的承载力Rd=27.69kNF=25.99kN。故本体系立杆均可知足强度及稳定承载力要求。2、立杆基础强度验算本工程高支模架体架立杆全部在100厚C15素混凝土垫层上,垫层混凝土抗压强度设计值fc=7.2N/mm2,立杆对C15素混凝土基层产生的最大压应力为:fmax=25.99×103/100×100=2.60N/mm2fc=16.7N/mm2知足要求。所以由以上验算结果可知本工程所有高支模部位立杆基础均知足强度要求。6、扣件受力计算