欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    机器人学导论chapter4.docx

    • 资源ID:19006978       资源大小:126.99KB        全文页数:24页
    • 资源格式: DOCX        下载积分:10.88金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10.88金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    机器人学导论chapter4.docx

    机器人学导论chapter4Chapter4PlanarKinematicsKinematicsisGeometryofMotion.Itisoneofthemostfundamentaldisciplinesinrobotics,providingtoolsfordescribingthestructureandbehaviorofrobotmechanisms.Inthischapter,wewilldiscusshowthemotionofarobotmechanismisdescribed,howitrespondstoactuatormovements,andhowtheindividualactuatorsshouldbecoordinatedtoobtaindesiredmotionattherobotend-effecter.Thesearequestionscentraltothedesignandcontrolofrobotmechanisms.Tobeginwith,wewillrestrictourselvestoaclassofrobotmechanismsthatworkwithinaplane,i.e.PlanarKinematics.Planarkinematicsismuchmoretractablemathematically,comparedtogeneralthree-dimensionalkinematics.Nonetheless,mostoftherobotmechanismsofpracticalimportancecanbetreatedasplanarmechanisms,orcanbereducedtoplanarproblems.Generalthree-dimensionalkinematics,ontheotherhand,needsspecialmathematicaltools,whichwillbediscussedinlaterchapters.4.1PlanarKinematicsofSerialLinkMechanismsExample4.1Considerthethreedegree-of-freedomplanarrobotarmshowninFigure4.1.1.Thearmconsistsofonefixedlinkandthreemovablelinksthatmovewithintheplane.Allthelinksareconnectedbyrevolutejointswhosejointaxesareallperpendiculartotheplaneofthelinks.Thereisnoclosed-loopkinematicchain;hence,itisaseriallinkmechanism.Figure4.1.1ThreedofplanarrobotwiththreerevolutejointsTodescribethisrobotarm,afewgeometricparametersareneeded.First,thelengthofeachlinkisdefinedtobethedistancebetweenadjacentjointaxes.LetpointsO,A,andBbethelocationsofthethreejointaxes,respectively,andpointEbeapointfixedtotheend-effecter.ThenthelinklengthsareEBBAAO=321,AAA.LetusassumethatActuator1drivinglink1isfixedtothebaselink(link0),generatingangle1,whileActuator2drivinglink2isfixedtothetipofLink1,creatingangle2betweenthetwolinks,andActuator3drivingLink3isfixedtothetipofLink2,creatingangle3,asshowninthefigure.Sincethisrobotarmperformstasksbymovingitsend-effecteratpointE,weareconcernedwiththelocationoftheend-effecter.Todescribeitslocation,weuseacoordinatesystem,O-xy,fixedtothebaselinkwiththeoriginatthefirstjoint,anddescribetheend-effecterpositionwithcoordinateseande.Wecanrelatetheend-effectercoordinatestothejointanglesdeterminedbythethreeactuatorsbyusingthelinklengthsandjointanglesdefinedabove:xy)cos()cos(cos321321211+=AAAex(4.1.1)sin()sin(sin321321211+=AAAey(4.1.2)Thisthreedofrobotarmcanlocateitsend-effecteratadesiredorientationaswellasatadesiredposition.Theorientationoftheend-effectercanbedescribedastheanglethecenterlineoftheend-effectermeasuredfromthepositivexcoordinateaxis.Thisend-effecterorientationeisrelatedtotheactuatordisplacementsas321+=e(4.1.3)viewedfromthefixedcoordinatesysteminrelationtotheactuatordisplacements.Ingeneral,asetofalgebraicequationsrelatingthepositionandorientationofarobotend-effecter,oranysignificantpartoftherobot,toactuatororactivejointdisplacements,iscalledKinematicEquations,ormorespecifically,ForwardKinematicEquationsintheroboticsliterature.Exercise4.1ShownbelowinFigure4.1.2isaplanarrobotarmwithtworevolutejointsandoneprismaticjoint.Usingthegeometricparametersandjointdisplacements,obtainthekinematicequationsrelatingtheend-effecterpositionandorientationtothejointdisplacements.Figure4.1.2ThreedofrobotwithtworevolutejointsandoneprismaticjointNowthattheaboveExampleandExerciseproblemshaveillustratedkinematicequations,letusobtainaformalexpressionforkinematicequations.Asmentionedinthepreviouschapter,twotypesofjoints,prismaticandrevolutejoints,constituterobotmechanismsinmostcases.Thedisplacementofthei-thjointisdescribedbydistancediifitisaprismaticjoint,andbyangleiforarevolutejoint.Forformalexpression,letususeagenericnotation:qi.Namely,jointdisplacementqirepresentseitherdistancediorangleidependingonthetypeofjoint.iiidq=(4.1.4)PrismaticjointRevolutejointWecollectivelyrepresentallthejointdisplacementsinvolvedinarobotmechanismwithacolumnvector:,wherenisthenumberofjoints.Kinematicequationsrelatethesejointdisplacementstothepositionandorientationoftheend-effecter.Letuscollectivelydenotetheend-effecterpositionandorientationbyvectorp.Forplanarmechanisms,theend-effecterlocationisdescribedbythreevariables:Tnqqqq"21=?=eeeyxp(4.1.5)Usingthesenotations,werepresentkinematicequationsasavectorfunctionrelatingptoq:113,),(nxxqpqfp?=(4.1.6)Foraseriallinkmechanism,allthejointsareusuallyactivejointsdrivenbyindividualactuators.Exceptforsomespecialcases,theseactuatorsuniquelydeterminetheend-effecterpositionandorientationaswellastheconfigurationoftheentirerobotmechanism.Ifthereisalinkwhoselocationisnotfullydeterminedbytheactuatordisplacements,sucharobotmechanismissaidtobeunder-actuated.Unlessarobotmechanismisunder-actuated,thecollectionofthejointdisplacements,i.e.thevectorq,uniquelydeterminestheentirerobotconfiguration.Foraseriallinkmechanism,thesejointsareindependent,havingnogeometricconstraintotherthantheirstrokelimits.Therefore,thesejointdisplacementsaregeneralizedcoordinatesthatlocatetherobotmechanismuniquelyandcompletely.Formally,thenumberofgeneralizedcoordinatesiscalleddegreesoffreedom.Vectorqiscalledjointcoordinates,whentheyformacompleteandindependentsetofgeneralizedcoordinates.4.2InverseKinematicsofPlanarMechanismsThevectorkinematicequationderivedintheprevioussectionprovidesthefunctionalrelationshipbetweenthejointdisplacementsandtheresultantend-effecterpositionandorientation.Bysubstitutingvaluesofjointdisplacementsintotheright-handsideofthekinematicequation,onecanimmediatelyfindthecorrespondingend-effecterpositionandorientation.Theproblemoffindingtheend-effecterpositionandorientationforagivensetofjointdisplacementsisreferredtoasthedirectkinematicsproblem.Thisissimplytoevaluatetheright-handsideofthekinematicequationforknownjointdisplacements.Inthissection,wediscusstheproblemofmovingtheend-effecterofamanipulatorarmtoaspecifiedpositionandorientation.Weneedtofindthejointdisplacementsthatleadtheend-effectertothespecifiedpositionandorientation.Thisistheinverseofthepreviousproblem,andisthusreferredtoastheinversekinematicsproblem.Thekinematicequationmustbesolvedforjointdisplacements,giventheend-effecterpositionandorientation.Oncethekinematicequationissolved,thedesiredend-effectermotioncanbeachievedbymovingeachjointtothedeterminedvalue.Inthedirectkinematicsproblem,theend-effecterlocationisdetermineduniquelyforanygivensetofjointdisplacements.Ontheotherhand,theinversekinematicsismorecomplexinthesensethatmultiplesolutionsmayexistforthesameend-effecterlocation.Also,solutionsmaynotalwaysexistforaparticularrangeofend-effecterlocationsandarmstructures.Furthermore,sincethekinematicequationiscomprisedofnonlinearsimultaneousequationswithmanytrigonometricfunctions,itisnotalwayspossibletoderiveaclosed-formsolution,whichistheexplicitinversefunctionofthekinematicequation.Whenthekinematicequationcannotbesolvedanalytically,numericalmethodsareusedinordertoderivethedesiredjointdisplacements.Example4.2ConsiderthethreedofplanararmshowninFigure4.1.1again.Tosolveitsinversekinematicsproblem,thekinematicstructureisredrawninFigure4.2.1.Theproblemistofindthreejointangles321,thatleadtheendeffectertoadesiredpositionandorientation,eeeyx,.Wetakeatwo-stepapproach.First,wefindthepositionofthewrist,pointB,fromeeeyx,.Thenwefind21,fromthewristposition.Angle3canbedeterminedimmediatelyfromthewristposition.Figure4.2.1SkeletonstructureoftherobotarmofExample4.1Letwandwbethecoordinatesofthewrist.AsshowninFigure4.2.1,pointBisatdistance3fromthegivenend-effecterpositionE.MovingintheoppositedirectiontotheendeffecterorientationxyAe,thewristcoordinatesaregivenbyeeweewyyxxsincos33AA?=?=(4.2.1)Notethattherighthandsidesoftheaboveequationsarefunctionsofeeeyx,alone.Fromthesewristcoordinates,wecandeterminetheangleshowninthefigure.1wwxy1tan?=(4.2.2)Next,letusconsiderthetriangleOABanddefineangles,asshowninthefigure.ThistriangleisformedbythewristB,theelbowA,andtheshoulderO.Applyingthelawofcosinestotheelbowangleyields2212221cos2r=?+AAAA(4.2.3)where,thesquareddistancebetweenOandB.Solvingthisforangle222wwyxr+=yields21222221122cosAAAAwwyx?+?=?=?(4.2.4)Similarly,221212cos2AAA=?+rr(4.2.5)Solvingthisforyields2212221221112costanwwwwwwyxyxxy+?+?=?=?AAA(4.2.6)Fromtheabove21,wecanobtain213?=e(4.2.7)Eqs.(4),(6),and(7)provideasetofjointanglesthatlocatestheend-effecteratthedesiredpositionandorientation.Itisinterestingtonotethatthereisanotherwayofreachingthesameend-effecterpositionandorientation,i.e.anothersolutiontotheinversekinematicsproblem.Figure4.2.2showstwoconfigurationsofthearmleadingtothesameend-effecterlocation:theelbowdownconfigurationandtheelbowupconfiguration.Theformercorrespondstothesolutionobtainedabove.Thelatter,havingtheelbowpositionatpointA,issymmetrictotheformerconfigurationwithrespecttolineOB,asshowninthefigure.Therefore,thetwosolutionsarerelatedas22''''2'232132211?+=?=?=+=e(4.2.8)Inversekinematicsproblemsoftenpossessmultiplesolutions,liketheaboveexample,sincetheyarenonlinear.Specifyingend-effecterpositionandorientationdoesnotuniquelydeterminethewholeconfigurationofthesystem.Thisimpliesthatvectorp,thecollectivepositionandorientationoftheend-effecter,cannotbeusedasgeneralizedcoordinates.Theexistenceofmultiplesolutions,however,providestherobotwithanextradegreeofflexibility.Considerarobotworkinginacrowdedenvironment.Ifmultipleconfigurationsexistforthesameend-effecterlocation,therobotcantakeaconfigurationhavingnointerferencewith1Unlessnotedspecificallyweassumethatthearctangentfunctiontakesanangleinaproperquadrantconsistentwiththesignsofthetwooperands.theenvironment.Duetophysicallimitations,however,thesolutionstotheinversekinematicsproblemdonotnecessarilyprovidefeasibleconfigurations.Wemustcheckwhethereachsolutionsatisfiestheconstraintofmovablerange,i.e.strokelimitofeachjoint.11Elbow-UpConfigurationFigure4.2.2MultiplesolutionstotheinversekinematicsproblemofExample4.24.3KinematicsofParallelLinkMechanismsExample4.3Considerthefive-bar-linkplanarrobotarmshowninFigure4.3.1.22112211sinsincoscosAAAA+=+=eeyx(4.3.1)NotethatJoint2isapassivejoint.Hence,angle2isadependentvariable.Using2,however,wecanobtainthecoordinatesofpointA:25112511sinsincoscosAAAA+=+=AAyx(4.3.2)PointAmustbereachedviathebranchcomprisingLinks3and4.Therefore,44334433sinsincoscosAAAA+=+=AAyx (4.3.3)Equatingthesetwosetsofequationsyieldstwoconstraintequations:4433251144332511sinsinsinsincoscoscoscosAAAAAAAA+=+=+(4.3.4)Notethattherearefourvariablesandtwoconstraintequations.Therefore,twoofthevariables,suchas31,areindependent.Itshouldalsobenotedthatmultiplesolutionsexistfortheseconstraintequations.xLink0Figure4.3.1Five-bar-linkmechanismAlthoughtheforwardkinematicequationsaredifficulttowriteoutexplicitly,theinversekinematicequationscanbeobtainedforthisparallellinkmechanism.Theproblemistofind31,thatleadtheendpointtoadesiredposition:.Wewilltakethefollowingprocedure:eeyx,Step1Given,findeeyx,21,bysolvingthetwo-linkinversekinematicsproblem.Step2Given21,obtain.Thisisaforwardkinematicsproblem.AAyx,Step3Given,findAAyx,43,bysolvinganothertwo-linkinversekinematicsproblem.Example4.4Obtainthejointanglesofthedogslegs,giventhebodypositionandorientation.Figure4.3.2AdoggyrobotwithtwolegsonthegroundTheinversekinematicsproblem:Step1GivenBBByx,findandAAyx,CCyx,Step2Given,findAAyx,21,Step3Given,findCCyx,43,4.4RedundantmechanismsAmanipulatorarmmusthaveatleastsixdegreesoffreedominordertolocateitsend-effecteratanarbitrarypointwithanarbitraryorientationinspace.Manipulatorarmswithlessthan6degreesoffreedomarenotabletoperformsucharbitrarypositioning.Ontheotherhand,ifamanipulatorarmhasmorethan6degreesoffreedom,thereexistaninfinitenumberofsolutionstothekinematicequation.Considerforexamplethehumanarm,whichhassevendegreesoffreedom,excludingthejointsatthefingers.Evenifthehandisfixedonatable,onecanchangetheelbowpositioncontinuouslywithoutchangingthehandlocation.Thisimpliesthatthereexistaninfinitesetofjointdisplacementsthatleadthehandtothesamelocation.Manipulatorarmswithmorethansixdegreesoffreedomarereferredtoasredundantmanipulators.Wewilldiscussredundantmanipulatorsindetailinthefollowingchapter.

    注意事项

    本文(机器人学导论chapter4.docx)为本站会员(安***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开