弹塑性力学简答题_1.docx
弹塑性力学简答题弹塑性力学简答题第一章应力1、什么是偏应力状态?什么是静水压力状态?举例讲明?静水压力状态时指微六面体的每个面只要正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。2、应力边界条件所描绘的物理本质是什么?物体边界点的平衡条件。3、对照应力张量ij与偏应力张量ijS,试问:两者之间的关系?两者主方向之间的关系?一样。110220330SSS=+=+=+。4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。连续体的形变分量x、y、xy不是相互独立的,而是相关,否则导致位移不单值,不连续。6、Pe平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。固体力学解答必须知足的三个条件是什么?可否忽略其中一个?第二章应变1、从数学和物理的不同角度,阐述相容方程的意义。从数学角度看,由于几何方程是6个,而待求的位移分量是个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点能够想象成微小六面体,微单元体之间就会出现“裂缝或者互相“嵌入,即产生不连续。、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数等都完全一样的线弹性平面问题,它们的应力分布能否一样?为什么?一样。应力分布遭到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。3、应力状态能否能够位于加载面外?为什么?不能够。保证位移单值连续。连续体的形变分量x、y、xy不是相互独立的,而是相关,否则导致位移不单值,不连续。4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量能否知足变形协调方程?为什么?知足。根据几何方程求出各应变分量,则变形协调方程自然知足,由于变形协调方程本身是从几何方程中推导出来的。5、应变协调方程的物理意义是什么?对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除知足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定知足变形协调方程吗?为什么?一定,从几何角度看,微单元体之间就会出现裂缝或者互相嵌入,即产生不连续现象、而实际物体在变形后应保持连续,因而,6个应变分量不能任意给定,必须知足一定的协调关系,否则,就会导致位移不单值,不连续现象产生7、求解弹性力学问题的应力法能应用于求解其中的位移边界问题吗?为什么?不能,位移边界条件无法用应力分量表示第三章弹性本构方程1、对于各项同性线弹性材料,应用广义胡克定律讲明应力与应变主轴重合?,222xXxyxyyyyzyzzzzxzxGGGGGG=+=+=+=,当某个面上的剪切应力为零时,剪应变也为零,这讲明应力的主方向与应变的主方向重合。、弹性应变能能够分解为哪两种应变能?体积改变能和形状改变能。、对于各向同性弹性体,弹性应变能能否能够一定能够表示为应力不变量或应变不变量)的函数?为什么?能够。弹性应变能是客观存在的,它与坐标系的选择无关。、对于各向同性超弹性体,其应变能是应力的三个不变量的函数,据此讲明在线性弹性情况下独立的弹性常数只要两个。应变能为应力的三个不变量的函数,由于第三不变量为应力的三次方,求导后为应力的二次方,第二不变量为应力的二次方,第一不变量为应力的一次方。故在线弹性情况下应变能为第一不变量的平方与第二不变量的线性组合。若含第三不变量,则非线性弹性。所以线性弹性情况下独立的弹性常数只要两个。应变能21211182WIJKG=+5、为什么弹性模量必须大于零?P7由于应变能函数W是非负的,即要求使材料从零应变状态产生变形到达某一应变状态外力必须做正功。简单地讲,在材料某一方向施加单轴拉应力,则必然引起同一方向上的伸长变形,应力与应变方向一样,则弹性模量大于零。6、超弹性材料的特点是什么?它的应力、应变和应变能三者之间的关系怎样?P3超弹性材料的特点是:在任意的加载卸载循环下,材料都不产生能量耗散。第四章弹性力学边值问题的微分提法与求解方法1、用应力作为未知数求解弹性力学问题时,应力除应知足平衡方程外还需要知足哪些方程?协调方程和边界条件。、使用应力作为基本未知数求解弹性力学问题,应力应知足哪些方程?本构方程和协调方程。第五章平面问题、两个弹性力学问题,一个为平面应力,一个为平面应变,所有其它条件都一样,试问两者的应力分布是否一样?不一样。前面一个是(,)(,)0xxyyzxyxy=,后面是1()2zxy=+0。第六章薄板弯曲1、薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小?平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;方向的挤压应力最小,是更次要的应力。,(,)(,)xyxyyzzxz>。2、一混凝土矩形薄板,受均布荷载,试问哪个方向的配筋量应该大一些?为什么?P1短边上的配筋量应该大一些由于短边方向上的最大弯矩大于长边方向的最大弯矩,且随着长边与短边的比值的增大,短边的弯矩比长边的弯矩大得越来越多。第八章能量原理虚位移原理:外力在虚位移上做的功等于内力在虚应变上做的功。没有涉及本构方程,等价于平衡微分方程和力边界条件。1、虚位移原理等价于哪两组方程?推导原理时能否涉及到物理方程?该原理能否适用于塑性力学问题?平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。2、虚位移原理等价于哪两组方程?这讲明了什么?平衡微分方程和力边界条件,讲明了虚位移原理是以能量形式表示的静力平衡。、最小势能原理的适用范围是什么?为什么?仅对弹性保守系统有效,由于是在条件弹性保守系统的假定下进行的。4、最小势能原理能否适用于分析塑性力学问题?为什么?不能,仅适用于弹性保守系统*5、物体稳定的充分条件怎样用应力增量和应变增量表示?并讲明对于线弹性该条件是知足的。6、虚功原理能否适用于塑性力学问题?为什么?能够,由于虚功原理没有涉及物体的本构方程,没有规定应力应变之间的详细关系第九章弹性力学问题的数值方法*1、与Ritz法相比拟,有限元方法的优点主要是哪些?在使用tz法进行近似求解时,需要在整个物体构造位移试验函数,对于复杂的几何开始,这往往比拟困难、有限元的基本思想则是:把整个求解区域分成很多个有限小区域,这些小区域称之为单元。单元与单元之间保持位移连续;然后,在每一个单元上求热能,将所有单元上的势能加起来得弹性体的总势能,最后应用最小势能原理求解单元节点位移。第十章塑性力学的基本概念1、什么是随动硬化?试用单轴加载的情况加以解释?反向屈从应力的降低程度正好等于正向屈从应力提高的程度,则称为随动硬化。单轴加载时(见课本图1.3a)2、塑性内变量能否能够减小?为什么?不能减小,内变量为刻画加载历史的量,若能够减小,会抵消一部分塑性变形,不能反映塑性历史4、什么是硬化?有哪几类硬化模型?硬化:应力在超过屈从极限后,随着应力的增加,应变不断增加的行为。等向硬化随动硬化混合硬化模型5、物体在外力作用下部分区域产生塑性变形,当外力完全卸去,一般都会产生残余应力,为什么?金属材料在外力作用下发生塑性变形后会有残余应力出现!而只发生弹性变形时却不会产生残余应力.原因:金属在外力作用下的变形是不均匀的,有的部位变形量大,而有的部位小,它们互相之间又是相互牵连在一起的整体,这样在变形量不同的各部位之间就出现了一定的弹性应力-当外力去除后这部分力仍然存在,就是所谓的残余应力.根据它们存在的范围可分为:宏观应力微观应力和晶格畸变应力注意它们是在一定范围存在的弹性应力,一般在浇注、锻打或加工后受热变形较多。一般要做时效处理。来消除应力。第十一章屈从条件1、举例讲明屈从条件为各向同性的物理含义?P227屈从条件与主应力的作用方位无关,即在不同的坐标系下,屈从函数具有一样的函数形式,即与坐标的选取无关.2、什么是Mises应力,为什么要这样定义?即等效应力,根据Mses屈从准则能够直接比拟Miss应力与屈从极限大小判定能否屈从第十二章塑性本构关系1、什么是加载?什么是卸载?什么是中性变载?中性变载能否会产生塑性变形?加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个经过称之为加载。卸载:当减少应力时,应力与应变将不会沿着原来的途径返回,而是沿接近于直线的途径回到零应力,弹性变形被恢复,塑性变形保留,这个经过称之为卸载。中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但由于应力改变,会产生弹性应变。2、中性变载能否会产生塑性变形?能否会产生弹性变形?分别是为什么?将保持不变,不中性变载是应力增量沿着加载面,即与加载面相切。因应力在同一个面上变化,内变量会产生新的塑性变形连续性条件,但由于应力改变,会产生弹性应变。3、对于非稳定材料,正沟通动法则能否成立?为什么?不成立。有应变软化存在,所以不成立。4、两种塑性本构理论的特点?增量理论和全量理论。增量理论将整个加载历史看成是一系列的微小增量加载经过所组成,研究每个微小增量加载经过中应变增量与应力增量之间的关系,再沿加载途径依次积分应变增量得最终的应变。全量理论不去考虑应力途径的影响,直接建立应变全量与应力全量直接的关系。5、理想塑性材料本构关系的塑性因子是通过什么来确定的?实际问题中,假如微单元体周围物体还牌弹性阶段,由于要知足变形协调条件,微单元体的塑性变形必然遭到周围物体的限制,而不可能任意发展,这时塑性因子的值是确定的,不过它不是通过微单元体本身的本构关系确定的,面是由问题的整体条件来确定。理想弹塑性问题,就在平稳、几何和本构方程的基础上,结合屈从条件一起求解以Mise等向硬化模型为例,试讲明怎样根据实验确定加载面的演化方程?P267根据单轴拉伸试验结果,得到关系曲线,即为任意途径下的等效应力-累积塑性变形增量关系曲线。切线的斜率为p=d/dp,将应力替换为等效应力,即得塑性模量h。若使用塑性功作为内变量,则加载面为:7、弹性本构关系和塑性本构关系的各自主要特点是什么?对于弹性体,一点的应力应取决于该是点的应变状态,即应力是应变函数:,进入塑性状态后,应变不仅取决于应力状态,而且取决于应力状态,而且还取决于应力历史8、理想塑性体内塑性区的变形能否总是协调的?为什么?是的,由于进入塑性区后,塑性变形能够任意发生第十三章塑性力学边值问题的提法与简单实例分析第十四章塑性流动与毁坏问题1、什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少?在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。剪切应力是最大剪应力。2、为什么滑移线方向没有伸长(或缩短变形?316由于滑移线上每一点的应力状态是纯剪和静水压力的叠加,而纯剪方向与滑移线方向一致,且静水压力不影响塑性变形,因而,一点的应变率状态为滑移线方向的纯剪切流动,而没有伸长或缩短变形。第十五章、上限定理求极限荷载的基本方法是什么?若外荷载在可能的毁坏机构上所做的功率大于零,且与毁坏机构的内部耗散功率相等,则这个外荷载不小于极限荷载,进而给出极限荷载的上限2、下限定理求极限荷载的基本方法是什么?与任意静力可能应力场相平衡的外荷载应不超出极限荷载,进而给出极限荷载的下限第十六章岩土材料屈从条件与塑性本构关系、使用Mise屈从条件和DckerPrge屈从条件,讲明金属材料和岩土材料屈从条件最本质的区别是什么?Mses屈从条件是22/30SfJ=-=,DruckerPragr屈从条件是10aIk=,区别是前一个只考虑偏应力,而后面一个在考虑偏应力的基础上还要考虑静水压力。2、Tresca屈从条件和Mis屈从条件能否适用于岩土材料?为什么?不能,由于ca各IS屈从条件假定屈从条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈从条件只取决于偏应力,而与静水压力无关,与此同时假定塑性应变增量与屈从面下次,不存在塑性体积变形,而且拉伸和压缩的塑性几乎一致,这些假定对于金属材料基本知足,但对于岩石砼一类脆性材料不适用。3、岩土材料中的膨胀角和内摩擦角的大小关系怎样?为什么?膨胀角小于内摩擦角令tn,称为膨胀角2ppvdd=实验表明: