(完好版)高中数学典型例题解析平面向量与空间向量.docx
(完好版)高中数学典型例题解析平面向量与空间向量高中数学典型例题分析第八章平面向量与空间向量§8.1平面向量及其运算一、疑难知识导析1向量的概念的理解,尤其是特殊向量“零向量向量是既有大小,又有方向的量向量的模是正数或0,是能够进行大小比拟的,由于方向不能比拟大小,所以向量是不能比大小的两个向量的模相等,方向一样,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量;2在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点;3对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因而,建议在记忆时比照记忆;4定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的;5平移公式中首先要知道这个公式是点的平移公式,故在使用的经过中须将起始点的坐标给出,同时注意顺序。二知识导学1.模长度:向量AB的大小,记作|AB|。长度为的向量称为零向量,长度等于个单位长度的向量,叫做单位向量。2.平行向量:方向一样或相反的非零向量叫做平行向量,又叫做共线向量。3.相等向量:长度相等且方向一样的向量。4.相反向量:我们把与向量a长度相等,方向相反的向量叫做a的相反向量。记作-a。5.向量的加法:求两个向量和的运算。已知a,b。在平面内任取一点,作AB=a,BC=b,则向量AC叫做a与b的和。记作a+b。6.向量的减法:求两个向量差的运算。已知a,b。在平面内任取一点O,作OA=a,OB=b,则向量BA叫做a与b的差。记作a-b。7.实数与向量的积:1定义:实数与向量a的积是一个向量,记作a,并规定:a的长度|a|=|·|a|;当0时,a的方向与a的方向一样;当0时,a的方向与a的方向相反;当0时,a=02实数与向量的积的运算律:设、为实数,则(a)=()a(+)a=a+a(a+b)=a+b8.向量共线的充分条件:向量b与非零向量a共线的充要条件是有且只要一个实数,使得ba。另外,设a=x1,y1,b=(x2,y2),则a/bx1y2x2y1=09.平面向量基本定理:假如1e、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只要一对实数1、2使a11e22e,其中不共线向量1e、2e叫做表示这一平面内所有向量的一组基底。10.定比分点设P1,P2是直线l上的两点,点P是不同于P1,P2的任意一点则存在一个实数,使21PP=21PP,叫做分有向线段所成的比。若点P1、P、P2的坐标分别为(x1,y1),(x,y),(x2,y2),则有十分当=1,即当点P是线段P1P2的中点时,有222121yyyxxx11.平面向量的数量积(1)定义:已知两个非零向量a和b,它们的夹角为,则数量|a|b|cos叫做a与b的数量积(或内积),记作a·b,即a·b|a|b|cos规定:零向量与任一向量的数量积是0。(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。(3)性质:设a,b都是非零向量,e是与b方向一样的单位向量,是a与e的夹角,则e·aa·e|a|cos,aba·b0当a与b同向时,a·b|a|b|当a与b反向时,a·b|a|b|十分地,a·a|a|2或|a|aacosbaba|a·b|a|b|(4)运算律:a·bb·a(交换律)(a)·b(b·a)a·(b)(ab)·ca·cb·c5平面向量垂直的坐标表示的充要条件:设a=x1,y1,b=(x2,y2),则aba·b=|a|·|b|cos90°=0abx1x2+y1y2=012.平移公式:设Px,y是图形F上的任意一点,它在平移后图形F/上对应点为P/x/,y/,且设/PP的坐标为h,k,则由/OP/PP,得:x/,y/x,y+h,k三、经典例题导讲例1和ar=(3,4)平行的单位向量是_;错解:由于ar的模等于5,所以与ar平行的单位向量就是51ar,即(35,45)错因:在求解平行向量时没有考虑到方向相反的情况。正解:由于ar的模等于5,所以与ar平行的单位向量是51ar,即(35,45)或(35,45)点评:平行的情况有方向一样和方向相反两种。读者能够本人再求解“和ar=(3,4)垂直的单位向量,结果也应该是两个。例2已知A2,1,B3,2,C-1,4,若A、B、C是平行四边形的三个顶点,求第四个顶点D的坐标。错解:设D的坐标为x,y,则有x-2=-1-3,y-1=4-2,即x=-2,y=3。故所求D的坐标为-2,3。错因:思维定势。习惯上,我们以为平行四边形的四个顶点是根据ABCD的顺序。其实,在这个题目中,根本就没有指出四边形ABCD。因而,还需要分类讨论。正解:设D的坐标为x,y当四边形为平行四边形ABCD时,有x-2=-1-3,y-1=4-2,即x=-2,y=3。解得D的坐标为-2,3;当四边形为平行四边形ADBC时,有x-2=3-1,y-1=2-4,即x=6,y=-1。解得D的坐标为6,-1;当四边形为平行四边形ABDC时,有x-3=-1-2,y-2=4-1,即x=0,y=5。解得D的坐标为0,5。故第四个顶点D的坐标为-2,3或6,-1或0,5。例3已知P1(3,2),P28,3,若点P在直线P1P2上,且知足|P1P|=2|PP2|,求点P的坐标。错解:由|P1P|=2|PP2|得,点P分P1P2所成的比为2,代入定比分点坐标公式得P38,319错因:对于|P1P|=2|PP2|这个等式,它所包含的不仅是点P为P1,P2的内分点这一种情况,还有点P是P1,P2的外分点。故须分情况讨论。正解:当点P为P1,P2的内分点时,P分P1P2所成的比为2,此时解得P38,319;当点P为P1,P2的外分点时,P分P1P2所成的比为-2,此时解得P13,4。则所求点P的坐标为38,319或13,4。点评:在运用定比分点坐标公式时,要审清题意,注意内外分点的情况。也就是分类讨论的数学思想。例4设向量),(11yxa,),(22yxb,0b,则“ba/是“1221yxyx的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件分析:根据向量的坐标运算和充要条件的意义进行演算即可解:若ba/,0b,则bra,代入坐标得:),(),(2211yxryx,即21rxx且21ryy消去r,得1221yxyx;反之,若1221yxyx,则21rxx且21ryy,即),(),(2211yxryx则bra,ba/故“ba/是“1221yxyx的充要条件答案:C点评:此题意在稳固向量平行的坐标表示例5已知a=1,-1,b=-1,3,c=3,5,务实数x、y,使c=xa+yb分析:根据向量坐标运算和待定系数法,用方程思想求解即可解:由题意有xa+yb=x1,-1+y-1,3=x-y,-x+3y又c=3,5x-y=3且-x+3y=5解之得x=7且y=4点评:在向量的坐标运算中经常要用到解方程的方法例6已知A-1,2,B2,8,=31,=-31,求点C、D和向量的坐标分析:待定系数法设定点C、D的坐标,再根据向量,和关系进行坐标运算,用方程思想解之解:设C、D的坐标为),(11yx、),(22yx,由题意得AC=2,111yx,AB=3,6,DA=222,1yx,BA=-3,-6又=31,=-312,111yx=313,6,222,1yx=-31-3,-6即(2,111yx)=(1,2),(222,1yx)=(1,2)111x且221y,112x且222y01x且41y,且22x02y点C、D和向量CD的坐标分别为0,4、-2,0和-2,-4小结:此题涉及到方程思想,对学生运算能力要求较高§8.2平面向量与代数、几何的综合应用一、疑难知识导析1初中学过的勾股定理只是余弦定理的一种特殊情况。如当C=2时,Ccos=0,此时有222bac;2由于本节内容与代数、几何联络比拟紧,故读者需对解斜三角形、解析几何中的圆锥曲线等知识非常熟悉方可。二、知识导学1.余弦定理:三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的2倍,即Abccbacos2222Baccabcos2222Cabbaccos22222.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即RCcBbAa2sinsinsin三经典例题导讲例1在ABC中,已知a2b2bcc2,则角A为()A3B6C32D3或32错解:选A错因:公式记不牢,误将余弦定理中的“减记作“加。正解:a2b2bcc2b2c22bc(21)b2c22bc·cos32A32选C.例2在ABC中,已知BbAacoscos,试判别其形状。错解:等腰三角形。错因:忽视了两角互补,正弦值也相等的情形。直接由BbAacoscos得,BBAAcossincossin,即BA2sin2sin,则BA22。接着下结论,所求三角形为等腰三角形正解:由BbAacoscos得,BBAAcossincossin,即BA2sin2sin则BA22或018022BA,故三角形为直角三角形或等腰三角形。例3在中,其内切圆面积为,求面积。分析:题中涉及到内切圆,而内切圆直接与正弦定理联络起来了,同时正弦定理和余弦定理又由边联络起来了。解:由已知,得内切圆半径为23.由余弦定理,得三角形三边分别为16,10,14. 例5已知定点A(2,1)与定直线l:3x-y+5=0,点B在l上移动,点M在线段AB上,且分AB的比为2,求点M的轨迹方程.分析:向量的坐标为用“数的运算处理“形的问题搭起了桥梁,构成了代数与几何联络的新纽带.解:设B(x0,y0),M(x,y)AM=(x-2,y-1),MB=(x0-x,y0-y),由题知AM=2MB)(21)(2200yyyxxx21322300yyxx由于3x0-y0+5=0,3×223x-213y+5=0化简得M的轨迹方程为9x-3y+5=0例4在中,试求周长的最大值。并判定此时三角形的形状。错解:由于题目中出现了角和对边,故使用余弦定理,进一步想使用不等式或二次函数求最值错因:其实这种思路从外表上看是可行的,实际上处理经过中回碰到无法进行下去的困难。正解:由正弦定理,得a=2(26)sinA,b=2(26)sinB.a+b=2(26)(sinA+sinB)=4(26)sin2BAcos2BAsin2BA=sin75o=426a+b=(26)2cos2BA(26)2=8+43.当a=b时,三角形周长最大,最大值为8+43+26.此时三角形为等腰三角形例6过抛物线:y2=2px(p>0)顶点O作两条相互垂直的弦OA、OB(如图),求证:直线AB过一定点,并求出这一定点.分析:对于向量a=(x1,y1),b=(x2,y2),有a/bx1y2-x2y1=0.能够用来处理解析几何中的三点共线与两直线平行问题.证实:由题意知可设A点坐标为(pt221,t1),B点坐标为(pt222,t2)ykiA(x,y,z)OjzOA=(pt221,t1),OB=(pt222,t2),OAOB,OA?OB=0pt221?pt222+t1?t2=0t1?t2=-4p2设直线AB过点M(a,b),则BM=(a-pt222,b-t2),BA=(pt221-pt222,t1-t2),由于向量BM与BA是共线向量,a-pt222(t1-t2)=(b-t2)(pt221-pt222)化简得2p(a-2p)=b(t1+t2)显然当a=2p,b=0时等式对任意的成立直线AB过定点,且定点坐标为M(2p,0)四典型习题导练1已知锐角三角形的边长分别为2,3,x,则第三边x的取值范围是A1x5B5x13C13x5D1x52三顶点,则的面积为_。3ABC中,若边a:b:c2:(13):2,则内角A。4某人在C点测得塔顶A在南偏西80°,仰角为45°,此人沿南偏东40°方向前进10米到0,测得塔顶A仰角为30°,则塔高。5在ABC中,已知B30°,b50,c150,解三角形并判定三角形的形状。6在ABC中,已知CBAcotcotcot,断定ABC是什么三角形。§8.3空间向量及其运算一、知识导学1空间直角坐标系:1若空间的一个基底的三个基向量相互垂直,且长为1,这个基底叫单位正交基底,用,ijkrrr表示;2在空间选定一点O和一个单位正交基底,ijkrrr,以点O为原点,分别以,ijkrrr的方向为正方向建立三条数轴:x轴、y轴、z轴,它们都叫坐标轴我们称建立了一个空间直角坐标系Oxyz,点O叫原点,向量,ijkrrr都叫坐标向量通过每两个坐标轴的平面叫坐标平面,分别称为xOy平面,yOz平面,zOx平面;2空间直角坐标系中的坐标:在空间直角坐标系Oxyz中,对空间任一点A,存在唯一的有序实数组(,)xyz,使kzjyixOA,有序实数组(,)xyz叫作向量A在空间直角坐标系Oxyz中的坐标,记作(,)Axyz,x叫横坐标,y叫纵坐标,z叫竖坐标3空间向量的直角坐标运算律:1若123(,)aaaar,123(,)bbbbr,则112233(,)ababababrr,112233(,)ababababrr,123(,)()aaaaRr,112233ababababrr,112233/,()ababababRrr,1122330ababababrr2若111(,)Axyz,222(,)Bxyz,则212121(,)ABxxyyzzuuur一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4模长公式:若123(,)aaaar,则|ar5夹角公式:cos|abababrrrrrr6两点间的距离公式:若111(,)Axyz,222(,)Bxyz,则|ABuuur二、疑难知识导学1、对于这部分的一些知识点,读者能够对照平面向量的知识,看哪些知识能够直接推广,哪些需要作修改,哪些不能用的,稍作整理,以便于记忆;2、空间向量作为新参加的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵敏性,所以本节的学习难点在于把握应用空间向量的常用技巧与方法,十分是体会其中的转化的思想方法如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,怎样取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量如何来表达是问题的关键3、向量运算的主要应用在于如下几个方面:(1)判定空间两条直线平行(共线)或垂直;(2)求空间两点间的距离;(3)求两条异面直线所成的角.4、本节内容对于立体几何的应用,读者需自行温习,这里不再赘述。三、经典例题导讲例1下列所表示的空间直角坐标系的直观图中,不正确的是错解:B、C、D中任选一个错因:对于空间直角坐标系的表示不清楚。有共同的原点,且两两垂直的三条数轴,只要符合右手系的规定,就能够作为空间直角坐标系正解:易知(C)不符合右手系的规定,应选(C)例2已知点A(3,1,1),点B(2,2,3),在Ox、Oy、Oz轴上分别取点L、M、N,使它们与A、B两点等距离错因:对于坐标轴上点的坐标特征不明;使用方程解题的思想意识不够。分析:设Ox轴上的点L的坐标为(x,0,0),由题意可得关于x的一元方程,进而解得x的值类似可求得点M、N的坐标解:设L、M、N的坐标分别为(x,0,0)、(0,y,0)、(0,0,z)由题意,得(x3)211(x2)249,9(y1)214(y2)29,91(z1)244(z3)2分别解得23,1.3zyx,故)23,0,0(),0,1,0(),0,0,3(NML评注:空间两点的距离公式是平面内两点的距离公式的推广:若点P、Q的坐标分别为(x1,y1,z1)、(x2,y2,z2),则P、Q的距离为212212212)()()(zzyyxxPQ必须熟练把握这个公式例3设231(,)aaaar,231(,)bbbbr,且abrr,记|abmrr,求abrr与x轴正方向的夹角的余弦值错解:取x轴上的任一向量(,0,0)cxr,设所求夹角为,22331111()(,)(,0,0)()abcabababxabxrrr1111()()cos|abcabxabmxmabcrrrrrr,ABCDOED1C1B1A1DC即余弦值为mba11错因:审题不清。没有看清“x轴正方向,并不是x轴正解:取x轴正方向的任一向量(,0,0)cxr,设所求夹角为,22331111()(,)(,0,0)()abcabababxabxrrr1111()()cos|abcabxabmxmabcrrrrrr,即为所求例4在ABC中,已知(2,4,0),BC(1,3,0),则ABC解:(2,4,0),(1,3,0),BABCuuuruuurQ1052122,cosBCBA=22ABC135°例5已知空间三点A(0,2,3),B(2,1,6),C(1,1,5),求以向量,为一组邻边的平行四边形的面积S;若向量ar分别与向量,垂直,且|ar|3,求向量ar的坐标分析:21|cos),2,3,1(),3,1,2(ACABBACBAC60°,3760sin|S设ar(x,y,z),则,032zyx33|,023222zyxazyxACa解得xyz1或xyz1,ar(1,1,1)或ar(1,1,1).例6已知正方体1AC的棱长为a,E是1CC的中点,O是对角线1BD的中点,求异面直线1CC和1BD的距离解:以D为原点,1,DADCDD所在的直线分别为x轴,y轴、z轴建立空间直角坐标系,则(,0,0),(,0),(0,0)AaBaaCa11(,),(,0,),(0,0,0)BaaaAaaD,