高三学年的数学知识点及温习资料.docx
高三学年的数学知识点及温习资料高三学年的数学知识点及温习资料赞锐高三的课一般有两种形式:温习课和评讲课,到高三所有课都进入温习阶段,通过温习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因而在温习课之前一定要弄清那些已懂那些还不懂,加强听课的主动性。我带来了高三学年的数学知识点及温习资料,希望大家能够喜欢!高三学年的数学知识点及温习资料11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判定函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判定其奇偶性;(5)奇函数在对称的单调区间内有一样的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式ag(x)b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减断定;3.函数图像(或方程曲线的对称性)(1)证实函数图像的对称性,即证实图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证实图像C1与C2的对称性,即证实C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对xR时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(ab)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对xR时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解kD(D为f(x)的值域);6.af(x)恒成立af(x)max,;af(x)恒成立af(x)min;7.(1)(a0,a1,b0,nR+);(2)logaN=(a0,a1,b0,b1);(3)logab的符号由口诀“同正异负记忆;(4)alogaN=N(a0,a1,N8.判定对应能否为映射时,捉住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中能够有一样的象;9.能熟练地用定义证实函数的单调性,求反函数,判定函数的奇偶性。10.对于反函数,应把握下面一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有一样的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(xB),f-1f(x)=x(xA);11.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法:一看开口方向;二看对称轴与所给区间的相对位置关系;12.根据单调性利用一次函数在区间上的保号性可解决求一类参数的范围问题;13.恒成立问题的处理方法(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;高三学年的数学知识点及温习资料2a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证实。n=1时,a(1)=a+(1-1)r=a。成立。假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r.通项公式也成立。因而,由归纳法知,等差数列的通项公式是正确的。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+(a+r)+.+a+(n-1)r=na+r1+2+.+(n-1)=na+n(n-1)r/2同样,可用归纳法证实求和公式。a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1).可用归纳法证实等比数列的通项公式。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+ar+.+ar(n-1)=a1+r+.+r(n-1)r不等于1时,S(n)=a1-rn/1-rr=1时,S(n)=na.同样,可用归纳法证实求和公式。高三学年的数学知识点及温习资料31、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。十分地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因而,倾斜角的取值范围是0°180°2、直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。高三学年的数学知识点及温习资料