高三数学温习资料整理归纳.docx
高三数学温习资料整理归纳高三数学温习资料整理归纳要学会乐观学习。子曰:“知之者不如好之者,好之者不如乐之者,此乃乐观学习之谓也。既然学习是生活的一部分,就应该乐观地对待它,不管你在轻松地学习,还是困难地学习。其实,只要擅长在未知中寻找兴趣,你就能永远乐观地对待学习。下面给大家带来一些关于高三数学温习资料整理归纳,希望对大家有所帮助。高三数学温习资料整理11、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S确实定事件;(4)随机事件:在条件S下可能发生可以能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在一样的条件S下重复n次试验,观察某一事件A能否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,假如随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联络:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增加,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下能够近似地作为这个事件的概率3.1.3概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,知足加法公式:P(AB)=P(A)+P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因而0P(A)1;2)当事件A与B互斥时,知足加法公式:P(AB)=P(A)+P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)=P(A)+P(B)=1,于是有P(A)=1P(B);4)互斥事件与对立事件的区别与联络,互斥事件是指事件A与事件B在一次试验中不会同时发生,其详细包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发惹事件A不发生,对立事件互斥事件的特殊情形。3.2.13.2.2古典概型及随机数的产生1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。(2)古典概型的解题步骤;求出总的基本事件数;求出事件A所包含的基本事件数,然后利用公式P(A)3.3.13.3.2几何概型及均匀随机数的产生1、基本概念:(1)几何概率模型:假如每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.高三数学温习资料整理21、柱、锥、台、球的构造特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面类似,其类似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:上下底面是类似的平行多边形侧面是梯形侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周构成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.高三数学温习资料整理31、集合的概念集合是数学中最原始的不定义的概念,只能给出,描绘性讲明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、来表示。元平素用小写字母a、b、c、来表示。集合是一个确定的整体,因而对集合可以以这样描绘:具有某种属性的对象的全体组成的一个集合。2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做aA;元素a不属于集合A,记做a?A。3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一详细对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只要一种成立。例如A=0,1,3,4,可知0A,6?A。(2)互异性:“集合张的元素必须是互异的,就是讲“对于一个给定的集合,它的任何两个元素都是不同的。(3)无序性:集合与其中元素的排列次序无关,如集合a,b,c与集合c,b,a是同一个集合。4、集合的分类集合科根据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。如“方程3x+1=0的解组成的集合,由“2,4,6,8,组成的集合,它们的元素个数是可数的,因而两个集合是有限集。无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点“所有的三角形,组成上述集合的元素不可数的,因而他们是无限集。十分的,我们把不含有任何元素的集合叫做空集,记错F,如x?R|+1=0。5、特定的集合的表示为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。(2)非负整数集内排出0的集合,也称正整数集,记做N-或N+。(3)全体整数的集合通常简称为整数集Z。(4)全体有理数的集合通常简称为有理数集,记做Q。(5)全体实数的集合通常简称为实数集,记做R。高三数学温习资料整理归纳