MATLAB数学实验报告_4.docx
MATLAB数学实验报告特解:0.8571,-0.7143,0,0基础解系:1=0.1429,-1.2857,1,0,2=0.1429,0.7143,0,1通解:0.14290.14290.8571-1.28570.7143-0.7143X=k11+k20+0,k1,k2?R010感想与反思:A通过解这道题,熟练把握了用MATLAB软件解线性方程组的方法B手工解线性方程组非常繁琐,通过这道题,进一步认识到MATLAB的强大2.实验五.练习2.24*4的加密锁:程序代码q=371522;251117;361321;9183646det(q)jiemiyaoshi=inv(q)w=68105108105103101110991013210511511632116104101321091111161041011143211110232115117999910111511532a=reshape(w,4,9)b=q*ainv(q)*b结果显示6*6的加密锁代码q=234216;77119217;4695212;87129217;334216;646612det(q)jiemiyaoshi=inv(q)w=68105108105103101110991013210511511632116104101321091111161041011143211110232115117999910111511532a=reshape(w,6,6)b=q*ainv(q)*b3.实验七,练习2.1程序代码单数阶导数在0处的值为零。symsxn=10taylor(exp(-x*x),n)he=1;ji=1;n=30;digits(50)fork=1:nji=ji*k;he=he+(-1)k)/ji;endans=1/he;e=vpa(ans,40)计算结果:2.718281828459044202617178598302416503429symsxn=10taylor(exp(x),n)he=1;ji=1;n=30;digits(50)fork=1:nji=ji*k;he=he+1/ji;ende=vpa(he,40)计算结果:2.718281828459045534884808148490265011787书上给出的e的真实值准确到小数点后40位:2.7182818284590452353602874713526624977572结论:能够看出在同样做29阶展开的情况下,得出结果准确位数均为40时,e(-x2)与e的真实值相比准确至小数点后第14位,而ex能够准确到小数点后第15位。讲明前者计算无理数e时需要选取的项数较多。感想与反思:A通过解这道题,把握了利用幂级数展开式计算无理数e的近似值。B用不同的展开式一样的阶数计算e的值会得到不同的结果,我们努力的方向就是能够得到用低阶得到准确值的式子4.实验八、练习1、2程序代码:c=7,8,8,8,7,8,7,9,8A=0.6,0.5,0.5,0,0,0,0,0,0;0,0,0,0.4,0.7,0.5,0,0,0;0,0,0,0,0,0,0.8,0.6,0.6b=700,800,900Aeq=1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1beq=300;400;500vlb=0,0,0,0,0,0,0,0,0vub=inf;inf;inf;inf;inf;inf;inf;inf;inf;x,fval=linprog(c,A,b,Aeq,beq,vlb,vub)结果显示:感想与反思:A通过这道题的练习,熟练把握了运用MATLAB解决实际问题的方法B应当注意题目中的等于条件和不等条件的不同用法5.实验八、练习2、1程序代码:c=-10,-12,-15,-11,-16,-13A=40,60,80,50,90,70;1,1,1,1,1,1b=300;5Aeq=beq=vlb=0,0,0,0,0,0vub=1;1;1;1;1;1x,f=linprog(c,A,b,Aeq,beq,vlb,vub)max=-f结果显示:感想与反思:A通过解这道题,进一步熟悉了用MATLAB判定最优方案的问题。B希望每一个值都取整数时能够限制结果的最小值为0,最大值为1。6.实验八、练习2、2程序代码:c=5,5,4,4,3,3,3,2,3,3,3,2,2,2,1,1,1,1;A=0,0,0,0,0,0,0,0,3,3,3,2,2,2,1,1,1,1;