第十二章数学中蕴涵的美学思想ppt课件.ppt
第十二章第十二章 数学中蕴涵的美学思想数学中蕴涵的美学思想第一节第一节 数学美的涵义数学美的涵义第二节第二节 数学美的特征数学美的特征退出一、数学家论数学美一、数学家论数学美二、数学美的涵义二、数学美的涵义 一、简单美一、简单美 二、二、 对称美对称美三、和谐美三、和谐美四、奇异美四、奇异美第三节第三节 感受数学美感受数学美 第四节第四节 数学美在中国的源头数学美在中国的源头 一、美观一、美观-外在的美外在的美二、美好二、美好-内在的美内在的美三、美妙三、美妙-快乐的美快乐的美四、完美四、完美- 至善至美至善至美一、太极八卦一、太极八卦-中国象数学的美中国象数学的美二、河图洛书二、河图洛书数学形式美的雏形数学形式美的雏形第一节第一节 数学美的涵义数学美的涵义一、数学家论数学美一、数学家论数学美 古希腊的哲学家、数学家普洛克拉斯(Proelus)断言:“哪里有数,哪里就有美。” 古希腊著名学者毕达哥拉斯(Pythagoras)对数学有很深的造诣,其中毕氏定理(勾股定理)就是他的杰作, 他认为“万物最基本的元素是数,数的和谐-这就是美。”返回 庞加莱:“数学家们十分重视他们的方法和理论是否十分优美,这并非华而不实的作风,那么到底是什么使我们感到一个解答、一个证明优美呢?那就是各个部分之间的和谐、对称、恰到好处的平稳。” 克莱因:“数学是人类最高超的智力成就,也是人类灵魂最独特的创造。音乐能激发或挠慰情怀,绘画能使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。” 高斯:“去寻求一种最美和最简洁的证明,乃是吸引我研究的主要动力。”返回二、数学美的涵义二、数学美的涵义返回返回返回第二节第二节 数学美的特征数学美的特征返回 一、一、 简单美简单美 简单性,在数学中普遍存在。数学中的每个概念,都是经过人们精心“雕琢”得到的,是人类智慧的结晶,数学就是以它的这种独特的“简”来展示它的美的。 简单性是数学美的本质之一 。数学是客观的数量关系和空间形式的高度抽象和概括,而经过不同程度的抽象后,所得出的数学形式和结构总是在不同的范围内呈现出简单的形态,简单性可用图表示。返回 简约是一种美。数学便是用最简洁的语言概括了数量关系、空间结构,也正因为简洁,数学才得以最广泛地运用,才有极强的生命力。 简洁的阿拉伯数字1, 2, 3, 4, 5, 6, 7, 8, 9, 0这一组数字是人们对物质世界存在性最直接最原始的表达。历史上,各国各民族都有自己的数字,但只有阿拉伯数字保留并广为流传,究其原因,简洁流畅的书写,干脆上口的发音,运算中进位快捷方便,是其胜出的法宝。 符号简单 符号是书写数学语言的文字,大数学家克莱因说:“符号常常比发明它们的数学家更能推理”, 人们总是探索用简单的符号去表现复杂的数学内容。返回在埃及出土的三千六百年前的莱因特纸草上有下面一串符号.37) 1712132(x用今天的符号表示即: 宋、元时期我国也开始了相当于现在“方程论” 的研究,当时记数使用的是“算筹”,的记号来表示二次三项式 412x2x +136 其中x系数旁边注以“元”字,常数项注以“太”字,筹上画斜线表示“负数”。返回 16世纪,数学家卡当、韦达等人对方程符号有了改进,直到笛卡尔才第一个倡用x, y, z表示未知数。 他曾用 xxx9xx +26240表示方程 x39x2 +2624 = 0 这个演变过程就是对简单美的追求过程。返回 如果要具体写出圆周率或欧拉常数根本不可能,然而用数学符号却能精确地表示它们。590457182818284. 2)11 (limnnne有些数及其运算只有用符号表示,才能更精确、更完美。 例如,圆周率是一个常数,1737年欧拉首先倡导用希腊字母来表示它,且通用全世界; 也是欧拉用e表示特殊的无理常数欧拉常数返回2. 形式简单形式简单 艺术家们追求的美中,形式美是其中特别重要的内容,他们在渲染美时,常常运用不同形式,如泰山的雄伟,华山的险峻,黄山的奇特,峨眉的秀丽,青海的幽深,滇池的开阔等。复杂性秩序返回 数学家们也十分注重数学的形式美,美国数学家柏克提出了一个公式 审美度= 即人们对数学的审美感受程度,与数学表现出的秩序成正比,与数学表现出的复杂性成反比。 因此,按审美度要求,数学的表现形式越简单就越美。格林公式cDdxdyQPyxQdyPdx斯托克斯公式 dSRQPzyxsinsinsinRdzQdyPdxcS返回空间解析几何中 椭球 1czbyax222222椭圆抛物面 2222byaxz它们不仅便于记忆,而且具有形式美。 返回222 ()()()1xaybzc球 3. 语言简单语言简单数学的简单美表现在语言上使人回味无穷。 如 “负负得正”;“对顶角相等”;“实数集不可数”; “角、边、角”;“边、角、边” 等 。数列极限 aaNnNNaannn, 0lim函数极限 A)x(fXx:x, 0X, 0A)x(flimxx)a(f)xa(flim)a(f0 x导数概念 返回4. 方法简单方法简单 数学中的许多简单有效的判定定理,形式优美的表达方式,并不是原本固有的,而是经过人们长期比较、筛选的结果。 例如,对于正项级数的收敛性判别,达朗贝尔判别法(比值法)与柯西判别法(根式法)都是十分简单有效的判别法, 然而它们都有一个共同的不足,就是不能判别当极限值 时级数的敛散性,于是人们不断地给出了许多其他形式的判别法。1l1nna比达朗贝尔判别法更精细的是拉贝(Laber)判别法 raannnn)1(lim1设 则 当 r1时,级数 收敛; 当 r1时,级数 发散。1nna返回 然而,人们在应用泰勒公式时,最习惯使用的还是拉格朗日型余项1n0)1n(n)xx()!1n()(f)x(R 其中 在x与x0 之间。 返回 又如,泰勒公式的余项,局部性的有皮亚诺(Peano)余项,整体性的有施诺米尔奇(Schlomilch)罗赫(Roche)余项,柯西余项和拉格朗日余项等。 在整体性余项中,后两种余项仅是前一种余项的特例。因而,从整体性考虑,前一种余项更完美。 拉格朗日型余项简单整齐,易于记忆,使用方便。从审美度而言拉格朗日型余项是最美的,因此受到人们的青睐。 对称是指一个整体的几个部分或几个整体在构成上的比为1时,作为协调的特例,给人以平衡感,从而作为审美对象使人产生对称美的感觉。在数学上一般指图形或数式的对称,概念、命题、法则或结构的对偶、对应、对逆等。 几何图形中的对称图形是典型的视觉对称美,平面或空间图形的中心对称、平面图形的轴对称、平面空间图形的面对称等都是这种典型。而既是中心对称而且所有过对称中心的直线都是对称轴的平面图形是圆,既是中心对称而且所有过对称中心的平面都是对称平面的立体图形是球。 毕达哥拉斯学派认为:“一切立体图形中最美的是球形,一切平面图形中最美的是圆形。”就是它们达到了“全”对称的原因。 返回二、二、 对称美对称美 1. 1. 形式对称形式对称 解析几何中的标准图形 返回代数中二项式的展开,呈现出的也是一种对称: 返回返回返回对称多项式对称行列式: 10101对称矩阵 :742451213返回微积分中空间曲线L:x = x(t), y = y(t), z = z(t) 的切线方程 )t (zzz)t (yyy)t (xxx000000空间曲面S :F(x, y, z) = 0的法线方程 )z,y,x(Fxx000 x0)z,y,x(Fyy000y0)z ,y,x (Fzz000z0=导数的运算法则 vu)vu(vuvu)uv(返回2. 2. 关系对称关系对称 运算的对称:加与减、乘与除、乘方与开方、指数与对数、微分与积分、矩阵与逆矩阵等; 概念的对称:函数与反函数、奇与偶、单增与单减、连续与间断、收级与发散等; 命题的对称:;),()(, 0)(),() 1 (上严格单增在则有baxfxfbax(2)( , )( )0,( ) ( , )xa bf xf xa b 有则在上严格单减。返回“共轭”关系对称性: 共轭无理数 ; cbacba 共轭矩阵 ;)(nmijaAnmij)a (A共轭积分;sin)(xdxxfxdxcos)x(f返回返回“对偶”关系对称性: 集合中的对偶关系 )CA()BA()CB(ABABABABA线性规划中的对偶关系 线性规划问题: . 0 x, bAx) t , s (,cxymin)v(约束条件目标函数(*) 返回对偶规划问题: . 0y, cyA) t , s (,ybzmax)v(约束条件目标函数(*) 由对偶定理知,若线性规划问题(*)有最优解,则其对偶规划问题(*)也有最优解, 且两问题的目标函数最优值相等。反之也成立。返回返回例 有A、B、C、D、E五个人站成一横排,如果B必须站在A右边(A、B可不相邻),有多少种不同站法?例 求 展开式中的整数次幕各系数的和。12+xn(5)三、和谐美三、和谐美 数学中的和谐美是指数学内容与内容之间、内容与形式之间、部分与整体之间存在着内在的联系或共同规律,从而形成本质上的严谨与统一。和谐指事物之间具有匀称、有序、明确的变化规律。 1. 严谨是和谐的基础严谨是和谐的基础 数学的严谨自然显现出它的和谐。为了追求严谨,消除数学中的不和谐因素,数学家们一直在努力。数学史上所谓的“数学危机”正是某些数学理论不和谐所致。 返回第一次危机-无理数的诞生。 第二次危机-实数理论得以建立, 导致集合论的诞生。第三次数学危机-“罗素悖论”和其它悖论的产生,为了避免悖论,策梅洛(Zermelo)在1908年提出了一种公理系统,后经弗兰克尔(Fraenkel)在1921年加以改进,形成了目前公认的彼此无矛盾的公理系统,简称ZF公理系统。 函数的连续性,是当今数学中的一个重要基本概念,然而它的现代定义的形成,也经历了一个从不和谐到和谐的漫长过程。 18世纪,数学家欧拉认为,由一个单独表达式给出的函数是连续的,而由几个表达式给出的函数是不连续的。例如, 欧拉函数返回. 0 xx, 0 xx)x( f是不连续的,而由两个分支组成的双曲线(反比例函数),因为它是由一个表达式 给出的,就认为它是连续的。x1y 19世纪,傅立叶证明:定义在某个区间上的任意函数可表示成该区间上的正弦与余弦的无穷级数。 比如,.x01, 0 x0, 0 x1)x(f返回可表示为)5x5sin3x3sin1xsin(4)x(f),(x 这样一来,上述函数依照欧拉的见解既不是连续的,同时又是连续的。 1821年,柯西对“连续”概念重新叙述,直至1850年魏尔斯特拉斯给出“形式” 的定义,才使得“连续”这一概念有了新的解释。2. 2. 统一是和谐的标志统一是和谐的标志 统一是指数学中内容与内容之间、内容与形式之间、章节与章节之间客观存在的相互联系。 返回 解析几何中, 引入极坐标之后,椭圆、双曲线、抛物线统一于公式cose1ep平面上的二次曲线方程0FEyDxCyBxyAx22 由于系数A, B, C, , F不同,其形态万千,但是欧拉通过坐标变换,将它们化为下面九种标准形状:返回 可描绘椭圆、抛物线和双曲线,描绘天体运动和万有引力场中运动物体的轨迹; 1)4(2222byax (双曲线) ; 0)3(2222byax (两虚直线相交) ; 1)2(2222byax(虚椭圆) ; 1) 1 (2222byax (椭圆) 返回.0)9(2x(两重合直线) ;0)8(22ax (两平行虚直线) 22(7)0;xa (两平行直线) ;02)6(2 pxy (抛物线) ;0)5(2222byax (两相交直线) 返回 在积分学中,不定积分与定积分是两个截然不同的概念,但在微积分基本公式ba)a (F)b(Fdx)x(f之中得到和谐统一, 从而极大地推动了微积分的应用与发展。 定积分、重积分、曲线积分和曲面积分,它们表述的实际意义各不相同,但却都统一于黎曼积分之中。 各类积分之间都有着内在联系 :返回二重积分 三重积分型曲线积分 型曲面积分 型曲线积分 型曲面积分定积分返回 四、奇异美四、奇异美 奇异指数学中的方法、结论或有关发展出乎意料,使人既惊奇又赞赏与折服。 徐利治先生说:“奇异是一种美,奇异到极度更是一种美。” 返回一性的升华,而新的和谐一性的升华,而新的和谐统一性统一性又是奇异性的进一步发展。又是奇异性的进一步发展。返回在数学史上曾吸引人们广泛关注的有“蝴蝶定理”。 1815年,数学家奥纳首先解决了这个问题的证明。但由于它优美的外形及包含的深刻内涵,引起了人们广泛的兴趣,100多年来研究者众多,给出了不少初等与高等的证明,其中被公认为最奇妙的证明是1973年由斯特温等人给出的。 蝴蝶定理:若过圆O中AB弦的中点M引任意两弦CD和EF,连结CF和ED交AB弦于P,Q,则PM = MQ。 证明:由图所示,圆内共有四对相等的角 。 ,设 PM = x , MQ = y, AM = MB = a, 则有 1SSSSSSSSCMPQMDQMDPFMPFMQEMQEMCMP1sinCMPMsinDMMQsinDQDMsinFMFPsinPMFMsinMQEMsinEQEMsinCPCM化简得 22)PM(DQEQ)MQ(FPCP返回由相交弦定理知 ,xa) xa)(xa (PBAPFPCP22,ya)ya)(ya (QBAQDQEQ22故有 .)()(222222xyayxa因x, y都大于0, 上式仅在x = y, 即PM = MQ时成立。 上述证明中没有添加任何辅助线,证明过程简明、匀称,好优美漂亮! 返回高等数学中这种“离经叛道”的奇异现象,随处可见。 比如,人们长期以为,周期函数一定存在最小正周期, 然而狄利克雷函数.0;1)(为无理数为有理数xxxD是周期函数,但不存在最小正周期。 实数轴上的有理点与无理点都是处处稠密的,然而无理点却比有理点多得多。 洛比达(LHospital)法则是求未定式极限的锐利武器, 但它对极限xxxxneeeelim返回却无能为力。 在不定积分中,有些看上去非常简单的函数,却“积”不出来: ;sindxxx;13xdx;dxxex.2dxex在欧拉公式 xsinixcoseix代入 , 得 x01ei人们把这人们把这5 5个常数戏称为数学中的个常数戏称为数学中的“五朵金花五朵金花”。 返回巧妙的联系起来了巧妙的联系起来了第三节第三节 感受数学美感受数学美 如何在数学教学过程中展现数学美,让学生在数学学习中能够感受和欣赏数学美,张奠宙教授认为,数学教学中的美学教育有以下4个层次: 美观、美好、美妙、完美。 返回一、美观一、美观-外在的美外在的美 这主要是数学对象以形式上的对称、和谐、简洁,给人的感官带来美丽、漂亮的感受。 几何学常常带给人们直观的美学形象 返回 2000年,在东京召开的国际数学教育大会上,日本教师一堂公开课的题目: 在一块矩形场地上筑一花坛,使其面积为场地的一半,要求设计美观。 美国教师要求学生用二次曲线画“米老鼠”或其它画作,发挥学生用几何曲线(写出方程)进行美术创作的想象力。 上海进才中学教研组,他们在进行立体几何教学时,要求学生以“柱体”、“台体”、“锥体”、“球体”、“圆柱”、“圆锥”等3维几何图形,制作一座运动会的奖杯,并要求学生写出每个部件的方程式。 返回二、美好二、美好-内在的美内在的美 数学上的许多东西,只有认识到它的正确性,才能感觉其“美好”。 “美观”的数学对象, 也必须进到“美好”的层次。 “圆”从结构上看是极其美观的。从性质上看它也十分美好。任何圆的周长与直径之比总是一个常数。既非有理数又非代数数,是超越数。这种内在的数学价值,展现了“圆”的魅力,引无数英雄尽折腰。从祖冲之的计算到今天用计算机算到60亿位小数,对它的研究尚未完结。 返回 不美观的数学对象是很多的。一个突出的例子是一元二次方程的求根公式: a2ac4bbx22, 1这一公式无论从哪方面看都不对称、不和谐、不美观。 返回三、美妙三、美妙-快乐的美快乐的美 教师要给学生一些创新、探究、以至发现的机会,体验发现真理的快乐。 美妙的感觉需要培养,例如,三角形的3条高、3条中线、3条内角平分线都交于一点, 这是很美丽、十分美好,同时令人惊奇的结论。发现它会使人觉得数学妙不可言,特别是几何学妙极了。那么在教学时,先不告诉学生结果, 让学生自己亲手作图,让学生自己发现这些一下子看不出来的“真理”。可以想见,学生自己发现一个数学真理该会是何等的惊喜。一旦体会到数学的“美妙”, 对数学产生由衷的兴趣,也就是顺理成章的事了。返回每个喜欢数字的人,都曾感受到那样的时刻:一条辅助线使无从着手的几何题豁然开朗, 一个技巧使百思不得其解的不等式证明得以通过,一个特定的“关系一映射一反演”方法使原不相干的问题得以解决, 这时的快乐与兴奋真是难以形容,也许只有用一个“妙”字加以概括。 这种美妙的意境,会使人感到天地造化数学之巧妙, 数学家创造数字之深邃,数学学习领悟之欢快。达到这一步,学生才算真正感受到数学美的真谛,被数学所吸引,喜欢数学,热爱数学。返回四、完美四、完美 -至善至美 数学总是尽力做到至善至美、完美无缺, 这也许是数学的最高“品质”和最高的精神“境界”。 数学家通过300余年的努力来证明费马定理,陈景润对歌德巴赫猜想的苦苦追求, 都是追求数学“完美”的典型事例。 二次曲线标准方程,既有圆锥曲线的优美,又有数形结合的风采; 既有启迪二次型的数学底蕴,更有描摹天体运动的功能, 确实是一件完美的科学杰作。 返回 数学的美学风格,和艺术风格是一脉相承的。徐利治先生早就把数学概念和诗的意境相结合, 如借“孤帆远影碧空尽”来描述极限,更是一种高品位的美学欣赏。爱舍儿的数学画,显示出浓厚的哲学意味,而奇异的数学分形艺术则是20世纪计算机技术的产物。 欣赏数学艺术,如何在课堂教学中发掘数学的艺术魅力,在我国还没有得到应有重视,特别是当前数学教学中某种过度形式化的趋向,往往掩盖了数学的美丽色彩,遮蔽了数学文化光芒,以至丧失了数学教学的美育功能。 把数学美的展示真正落实到课堂上,还有许多工作要做。返回第四节第四节 数学美在中国的源头数学美在中国的源头 数学作为一门有组织的、独立的、理性的学科来说,形成于公元前6世纪至公元前3世纪的古希腊时代。 早期的一些古代文明国家,如中国、埃及、印度和巴比伦等,数学已有了开端和萌芽, 我们称公元前6世纪以前的这个时期的数学为早期数学,而人类在早期数学中,就已经发现一种朦胧而神秘的数学美了,这是为考古学家和数学史家的大量发现和研究成果所证明了的。 人类关于数学美的观念,对于数学美的感受、追求、探索以及研究也早在遥远的古代就开始了, 这里介绍数学美在中国的源头。返回一、太极八卦一、太极八卦-中国象数学的美中国象数学的美 中国,在古代对于数学美的感受与体验,一直可追溯到公元前11世纪的殷末周初时期。 传说“天神”伏羲氏所创造的太极八卦图,说明我国古代先人对于圆形所呈现的美有着自己独特的认识。 古希腊的毕达哥拉斯之所以认为“一切平面图形中最美的是圆形”,其主要原因是由于圆有着无数条对称轴, 显示出一种绝对的对称与和谐。 返回 中国的太极图表示出了阴与阳的运动性质, 黑色的阴和白色的阳也呈现出一种对称。 但这种对称不是以平直单调的直径作为对称轴,而是以一条S形曲线将大圆均分成两半。 这一奇妙的分割产生许多意想不到的美的效果:它使得这个阴与阳之间的对称不是静止的,而是若即若离、似合非合,彼此渗透、相互补充。 暗示着无休止的强有力的运动,并可通过这个具有动态美的几何图形对事物进行抽象,给出宇宙万物对立统一运动的形象模式,告诉我们宇宙美的一种简单美妙的组合方式,但又没有具体指出它们的确切涵义,只道出了一个“互补性之谜”。其内含寓意的深刻,令人赞叹不已。 返回 “周易”经史学家考证,大约出于公元前11世纪左右,这是一部具有很强的科学现实性和实用性的古典,是世界公认的第一部讨论排列组合的著作,可以说是中国象数学的起源。 从数学角度看,八卦是世界上最早的二进制码,“易有太极,极生两仪,两仪生四象,四象生八卦” 其中“极、仪、象、卦”和十进制中的“个、十、百、千”一样可以看作进位制的“权”。 返回 八卦仅用两种基本符号: 阳爻“”和阴爻“一一”,这与现代二进制数用“l”和“0两个符号来记数完全一致。 “阳爻”与“阴爻”合称“两仪”,如果取两个为一卦,则这两个符号的排列组合仅有四种,称为“四象”:太阳、少阴、少阳、太阴。 如果取三个为一卦,则这两个符号的排列组合共有八种,称为“八卦”:乾、坤、震、艮、离、坎、兑、巽。其中乾、震、艮、坎因是奇数划而属阳,坤、离、兑、巽因是偶数划而属阴。它们分别对应自然界中主要的八种事物:天、地、雷、山、火、水、泽和风。返回二、河图洛书二、河图洛书数学形式美的雏形数学形式美的雏形 周易上曾提出一种包含数学知识来源于神的说法,原文是“河出图,洛出书,圣人则之。”其大意是:在伏羲氏时代,从黄河里跳出一匹龙马,背着一幅图,这幅图隐含了很多天机,被称为“河图”,如图(a)。在大禹治水时,洛水出现一只大乌龟,也背着一本包含治理国家的书,被称为“洛书”,如图(b)。这图和书是圣人一切知识的源泉。 图(a) 图(b) 返回 我们撇开神话的色彩,其实河图是由1到10的十个自然数的环形排列图,是把l、3、5、7、9五个奇数和2、4、6、8、10五个偶数按照水(北)、火(南)、木(东)、金(西)、土(中)五行方位排列而成的数字圈。其构图本身就呈现出一种整齐美。 “洛书”对数的结构作了巧妙的再安排,仅用1到9这九个自然数排列成一个正方形,构成每一行、每一列以及两条对角线上3个数的和都是15。显然,“洛书”是“河图”的精简与升华,由“河图”到“洛书”标志着中华民族古代数学文化的飞跃和成熟,是中国的数学、数学美之源。 “洛书”中显现出一种数学形式美的雏形,九个数字之间奇偶相异,给人以整齐划一、均衡对称之感。 返回 西方古代数学家将“洛书”发展为幻方,并以洛书三阶幻方为基础,使阶数不断增高,幻方的结构也随之越来越幻。直至今日,有人仍在研究幻方形成的理论和方法,“洛书”也由此一直被视为大众数学或游戏数学。 探究“洛书”的深层意蕴,其奇妙结构和演算变化建立了它独特的数学形象和模式,并为中外数学家开创了位置分析、数字几何与组合分析的先河。 返回