四直角三角形射影定理.ppt
直角三角形直角三角形的的射影定理射影定理CADB是高,则有中,在CDABCRtAC是是AD,AB的比例中项。的比例中项。BC是是BD,AB的比例中项。的比例中项。CD是是BD,AD的比例中项。的比例中项。那么那么AD与与AC,BD与与BC是什么关系呢?是什么关系呢?这节课,我们先来学习射影的概念。这节课,我们先来学习射影的概念。如图如图,CD是是 的斜边的斜边AB的高线的高线ABCRt这里这里:AC、BC为直角边,为直角边,AB为斜边,为斜边,CD是斜边上的高是斜边上的高AD是直角边是直角边AC在斜边在斜边AB上的正射影上的正射影,BD是直角边是直角边BC在斜边在斜边AB上的正射影。上的正射影。CADBABADAC2ABBDBC2DBADCD2CADB用文字如何叙述?用文字如何叙述?直角三角形中直角三角形中,斜边上的高线是两条斜边上的高线是两条直角边在斜边上的射影的比例中项直角边在斜边上的射影的比例中项,每一条直角边是这条直角边在斜边每一条直角边是这条直角边在斜边上的射影和斜边的比例中项上的射影和斜边的比例中项.这就是射影定理这就是射影定理CADB具体题目运用:具体题目运用:AC BCCD AB根据应用选取相应的乘积式。根据应用选取相应的乘积式。ABADAC2ABBDBC2DBADCD2利用射影定理证明勾股定理利用射影定理证明勾股定理:222ABABBDABADBCAC射影定理只能用在射影定理只能用在直角三角形直角三角形中中,且必须且必须有有斜边上的高斜边上的高CADB这里犯迷糊,可不行!可不行!如图如图,若若AD=2cm,DB=6cm,求求CD,AC,BC的长。的长。例例1解解:答答:CD,AC,BC的边长分别为的边长分别为cmcmcm34,4,32CADB分析:利用射影定理和勾股定理分析:利用射影定理和勾股定理;3212,12622cmCDDBADCD;416,166222cmACABADAC.3448,486262cmBCABBDBC(1)在在 中中,CD为斜边为斜边AB上的高上的高,图中共有图中共有6条线段条线段ABCRtAC,BC,CD,AD,DB,AB已知任意两条已知任意两条,便可求出其余四条便可求出其余四条.(2)射影定理中每个乘积式中射影定理中每个乘积式中,含三条线段含三条线段,若已知两条若已知两条 可可求第三条求第三条.(3)解题过程中解题过程中,注意和勾股定理联系注意和勾股定理联系,选择简便方法选择简便方法.你都弄懂了吗?你都弄懂了吗?CEFFBCDF:,求证于例例2. 如图如图,在在 中中,ABC,EACDEDABCD于于.CBA分析分析:欲证欲证 CEF.CBA公共角ECFACB已具备条件已具备条件要么找角要么找角, 要么找边要么找边.CACFCBCECEADFBCEFBCFEA或证法一证法一:例例2. 如图如图,在在 中中,ABC,EACDEDABCD于于.CBACEFFBCDF:,求证于ACDEABCDCACECD2BCDFABCDCBCFCD2CACFCBCEBCAECF.CBACEFCEADFB证法二:四点共圆找角