2021年广东省数学中考模拟冲刺专项试题(含答案解析).docx
-
资源ID:19451295
资源大小:379.68KB
全文页数:21页
- 资源格式: DOCX
下载积分:3金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021年广东省数学中考模拟冲刺专项试题(含答案解析).docx
2021年广东省数学中考模拟冲刺专项试题注意事项:1、勿折叠破损答题卡;2、正确粘贴条形码;3、每个考生只有一个备用条形码;4、答串试题,在试题前把试题号改写清楚就行;5、答错试题,重新答,一定要在本大题内找空做答,标清试题号。6、选择试题,填涂信息点时一定用2B铅笔,填涂信息点一定要规范。一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1|2|的倒数是()ABC2D22下列运算正确的是()A(x+y)2x2+y2B(x3)2x5Cx3x3x6Dx6÷x3x23三角形的下列线段中能将三角形的面积分成相等两部分的是()A中线B角平分线C高D中位线4对于一组数据1,1,4,2,下列结论不正确的是()A平均数是1B众数是1C中位数是0.5D方差是3.55已知A是锐角,且满足3tanA0,则A的大小为()A30°B45°C60°D无法确定6将一把直尺与一块三角板如图放置,若160°,则2为()A150°B120°C100°D60°7使式子的值为0的x的值为()A3或1B3C1D3或18若a、b互为相反数,c、d互为倒数,m是1的平方根,则m2cd+的值为()A2或2B0或2C0或2D09如图所示的几何体的俯视图是()ABCD10如图1,在菱形ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为x,ABP的面积为y把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A25B20C12D二、填空题(本大题共7小题,每小题4分,共28分)11因式分解:a2b4b12使得二次根式有意义的x的取值范围是13若一个正多边形的外角和等于内角和的一半,则该正多边形的边数是 14已知关于x的一元二次方程x22x+3k0有两个相等的实数根,则k的值是15如图,ABC中,DEBC,且AD:DB2:3,则SADE:S梯形DBCE16如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE5cm以点A为中心,将ADE按顺时针方向旋转得ABF,则点E所经过的路径长为cm17如图,在ABC中,ACB60°,点D,E分别是AB,AC的中点,点F在线段DE上,连接AF,CF若CF恰好平分ACB,且CF,则AC的长为三、解答题(1820题每小题6分,共18分)18先化简,再求值:(1)÷,其中x+219某学校准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种)根据以上统计图提供的信息,请解答下列问题:(1)m,n(2)补全上图中的条形统计图(3)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)20已知线段a4cm(1)用尺规作图作一个边长为4cm的菱形ABCD,使A60°(保留作图痕迹),(2)求这个菱形的面积四、解答题(每题8分,共24分)21某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?22某校初三年级“数学兴趣小组”实地测量操场旗杆的高度旗杆的影子落在操场和操场边的土坡上,如图所示,测得在操场上的影长BC20m,斜坡上的影长CD8m,已知斜坡CD与操场平面的夹角为30°,同时测得身高1.65m的学生在操场上的影长为3.3m求旗杆AB的高度(结果精确到1m)(提示:同一时刻物高与影长成正比参考数据:1.414.1.732.2.236)23已知:如图,在平面直角坐标系中,一次函数yax+b(a0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,2),tanBOC(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得BCE与BCO的面积相等,求出点E的坐标五、解答题(每题10分,共20分)24如图,在RtABC中,C90°,BAC的角平分线AD交BC于D(1)动手操作:利用尺规作O,使O经过点A、D,且圆心O在AB上;并标出O与AB的另一个交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,判断直线BC与O的位置关系,并说明理由;若AB6,BD2,求线段BD、BE与劣弧所围成的图形面积(结果保留根号和)25如图,在平面直角坐标系中,顶点为M的抛物线是由抛物线yx23向右平移1个单位得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3(1)写出以M为顶点的抛物线解析式及点A、B、M的坐标;(2)连接AB,AM,BM,求tanABM;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x轴正半轴的夹角为,当ABM时,求点P坐标参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)14的相反数是()A4B4CD【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可【解答】解:根据概念,(4的相反数)+(4)0,则4的相反数是4故选:B【点评】主要考查相反数的性质相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是02下列运算正确的是()A(x+y)2x2+y2B(x3)2x5Cx3x3x6Dx6÷x3x2【分析】用完全平方差公式,同底数幂的运算法则判断即可【解答】解:(x+y)2x2+2xy+y2,A不合题意(x3)2x6,B不合题意x3x3x3+3x6C符合题意x6÷x3x63x3D不合题意故选:C【点评】本题考查完全平方差,同底数幂的运算,正确掌握各运算法则是求解本题的关键3三角形的下列线段中能将三角形的面积分成相等两部分的是()A中线B角平分线C高D中位线【分析】根据等底等高的三角形的面积相等解答【解答】解:三角形的中线把三角形分成两个等底同高的三角形,三角形的中线将三角形的面积分成相等两部分故选:A【点评】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用4对于一组数据1,1,4,2,下列结论不正确的是()A平均数是1B众数是1C中位数是0.5D方差是3.5【分析】根据众数、中位数、方差和平均数的定义和计算公式分别对每一项进行分析,即可得出答案【解答】解:这组数据的平均数是:(11+4+2)÷41;1出现了2次,出现的次数最多,则众数是1;把这组数据从小到大排列为:1,1,2,4,最中间的数是第2、3个数的平均数,则中位数是0.5;这组数据的方差是:(11)2+(11)2+(41)2+(21)24.5;则下列结论不正确的是D;故选:D【点评】此题考查了方差、平均数、众数和中位数,一般地设n个数据,x1,x2,xn的平均数为,则方差S2(x1)2+(x2)2+(xn)2;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数5已知A是锐角,且满足3tanA0,则A的大小为()A30°B45°C60°D无法确定【分析】直接利用特殊角的三角函数值进而计算得出答案【解答】解:3tanA0,tanA,A30°故选:A【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键6将一把直尺与一块三角板如图放置,若160°,则2为()A150°B120°C100°D60°【分析】依据3是CDE的外角,即可得出3150°,再根据CDAB,即可得到23150°【解答】解:如图所示,3是CDE的外角,390°+190°+60°150°,又CDAB,23150°,故选:A【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键7使式子的值为0的x的值为()A3或1B3C1D3或1【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0两个条件需同时具备,缺一不可据此可以解答本题【解答】解:由题意可得x30且x24x+30,由x30,得x3,由x24x+30,得(x1)(x3)0,x1或x3,综上,得x1,即x的值为1故选:C【点评】本题考查了分式的值为0的条件由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题8若a、b互为相反数,c、d互为倒数,m是1的平方根,则m2cd+的值为()A2或2B0或2C0或2D0【分析】根据题意得a+b0,cd1,m21,整体代入代数式求值即可【解答】解:a、b互为相反数,c、d互为倒数,m是1的平方根,a+b0,cd1,m21,原式11+00,故选:D【点评】本题考查了实数的运算,考查了整体思想,整体代入代数式求值是解题的关键9如图所示的几何体的俯视图是()ABCD【分析】根据俯视图的意义,从上面看该几何体所得到的图形结合选项进行判断即可【解答】解:从上面看该几何体,是一列两个矩形,故选:D【点评】本题考查简单组合体的三视图,明确能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示是得出正确答案的前提10如图1,在菱形ABCD中,动点P从点B出发,沿折线BCDB运动,设点P经过的路程为x,ABP的面积为y把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A25B20C12D【分析】x5时,BC5;x10时,BC+CD10,则CD5;x18时,CB+CD+BD18,则BD8,进而求解【解答】解:如图2,x5时,BC5,x10时,BC+CD10,则CD5,x18时,CB+CD+BD18,则BD8,如下图,过点C作CHBD交于H,在RtCDH中,CDBC,CHBD,DHBD4,而CD5,故CH3,当x5时,点P与点C重合,即BP5,aSABPSABCBD×CH×8×312,故选:C【点评】本题考查的是动点图象问题,涉及到图形的面积、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解二、填空题(本大题共7小题,每小题4分,共28分)11因式分解:a2b4bb(a+2)(a2)【分析】观察原式a2b4b,找到公因式b,提出公因式后发现a24符合平方差公式,利用平方差公式继续分解可得【解答】解:a2b4bb(a24)b(a+2)(a2)【点评】考查了对一个多项式因式分解的能力一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(平方差公式)要求灵活运用各种方法进行因式分解12使得二次根式有意义的x的取值范围是x【分析】根据被开方数大于等于0列式计算即可得解【解答】解:根据题意得,2x+10,解得x故答案为:x【点评】本题考查的知识点为:二次根式的被开方数是非负数13若一个正多边形的外角和等于内角和的一半,则该正多边形的边数是 6【分析】根据一个正多边形的外角和等于其内角和的一半,可得内角和度数,再根据内角和得出这个正多边形的边数【解答】解:正多边形的外角和等于其内角和的一半,多边形的外角和等于360°,这个正多边形的内角和为720°,这个正多边形的边数为720°÷180°+26,所以该正多边形的边数是6故答案为:6【点评】此题主要考查了多边形的内角和与外角和,根据题意得到这个多边形的内角和是720°是解题关键14已知关于x的一元二次方程x22x+3k0有两个相等的实数根,则k的值是1【分析】根据方程有两个相等的实数根可得出0,列出关于k的方程,求出k的值即可【解答】解:关于x的一元二次方程x22x+3k0有两个相等的实数根,0,即(2)212k0,解得k1故答案为:1【点评】本题考查的是根的判别式,一元二次方程ax2+bx+c0(a0)的根与b24ac的关系是解答此题的关键15如图,ABC中,DEBC,且AD:DB2:3,则SADE:S梯形DBCE4:21【分析】证明ADEABC,进而证明,即可解决问题【解答】解:DEBC,且AD:DB2:3,ADEABC,故答案为4:21【点评】该题主要考查了相似三角形的判定及其性质的应用问题;应牢固掌握相似三角形的判定及其性质,并能灵活运用、解题16如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE5cm以点A为中心,将ADE按顺时针方向旋转得ABF,则点E所经过的路径长为cm【分析】先利用勾股定理求出AE的长,然后根据旋转的性质得到旋转角为DAB90°,最后根据弧长公式即可计算出点E所经过的路径长【解答】解:AD12cm,DE5cm,AE13(cm),又将ADE按顺时针方向旋转得ABF,而ADAB,旋转角为DAB90°,点E所经过的路径长(cm)故答案为【点评】本题考查了弧长公式:l;也考查了正方形的性质以及旋转的性质17如图,在ABC中,ACB60°,点D,E分别是AB,AC的中点,点F在线段DE上,连接AF,CF若CF恰好平分ACB,且CF,则AC的长为2【分析】延长AF交BC于F,根据三角形中位线定理得到DEBC,根据等腰三角形的性质得到CFAF,CFA30°,根据余弦的定义计算即可【解答】解:延长AF交BC于F,D,E分别是AB,AC的中点,DEBC,DEBC,AEEC,AFFH,CF恰好平分ACB,ACB60°,CFAF,CFA30°,AC2,故答案为:2【点评】本题考查的是三角形中位线定理、余弦的定义,等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键三、解答题(1820题每小题6分,共18分)18先化简,再求值:(1)÷,其中x+2【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值【解答】解:原式,当x+2时,原式1【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键19纪中三鑫双语学校准备开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了m名学生(每名学生必选且只能选择这五项活动中的一种)根据以上统计图提供的信息,请解答下列问题:(1)m100,n5(2)补全上图中的条形统计图(3)在抽查的m名学生中,有小薇、小燕、小红、小梅等10名学生喜欢羽毛球活动,学校打算从小薇、小燕、小红、小梅这4名女生中,选取2名参加全市中学生女子羽毛球比赛,请用列表法或画树状图法,求同时选中小红、小燕的概率(解答过程中,可将小薇、小燕、小红、小梅分别用字母A、B、C、D代表)【分析】(1)根据篮球的人数和占所占的百分比求出总人数,再用排球的人数除以总人数即可求出n的值;(2)用总人数减去其它项目的人数,即可求出足球的人数,从而补全统计图;(3)根据题意先画出树状图得出所有等可能的情况数和同时选中小红、小燕的情况数,再根据概率公式即可得出答案【解答】解:(1)由题意m30÷30%100,排球占×100%5%,则n5,故答案为100,5(2)足球的人数是:100302010535人,条形图如图所示,(3)根据题意画树状图如下:一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,P(B、C两人进行比赛)【点评】本题考查的是条形统计图和扇形统计图以及概率公式的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小20已知线段a4cm(1)用尺规作图作一个边长为4cm的菱形ABCD,使A60°(保留作图痕迹),(2)求这个菱形的面积【分析】(1)直接利用菱形的性质以及等边三角形的性质得出D,C点位置;(2)直接利用菱形面积求法得出答案【解答】解:(1)如图所示:四边形ABCD即为所求;(2)过点D作DHAB于点H,A60°,AD4cm,DAH30°,则AHAD2cm,故DH2(cm),则这个菱形的面积为:ABDH4×28(cm2)【点评】此题主要考查了复杂作图以及菱形的面积,正确掌握菱形的性质是解题关键四、解答题(每题8分,共24分)21某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x30经检验,x30是原方程的解,x+1030+1040答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元(2)设他们可购买y棵乙种树苗,依题意有30×(110%)(50y)+40y1500,解得y11,y为整数,y最大为11答:他们最多可购买11棵乙种树苗【点评】考查了分式方程的应用,分析题意,找到合适的等量关系和不等关系是解决问题的关键22某校初三年级“数学兴趣小组”实地测量操场旗杆的高度旗杆的影子落在操场和操场边的土坡上,如图所示,测得在操场上的影长BC20m,斜坡上的影长CD8m,已知斜坡CD与操场平面的夹角为30°,同时测得身高1.65m的学生在操场上的影长为3.3m求旗杆AB的高度(结果精确到1m)(提示:同一时刻物高与影长成正比参考数据:1.414.1.732.2.236)【分析】根据已知条件,过D分别作BC、AB的垂线,设垂足为E、F;在RtDCE中,已知斜边CD的长,和DCE的度数,满足解直角三角形的条件,可求出DE、CE的长即可求得DF、BF的长;在RtADF中,根据同一时刻物高与影长成正比求出DF的长,即可求得AF的长,进而ABAF+BF可求出【解答】解:过D作DE垂直BC的延长线于E,且过D作DFAB于F,在RtDEC中,CD8米,DCE30°DE4米,CE4米,BF4米,DF(20+4)米,身高l.65m的学生在操场 上的影长为3.3m,则AF(10+2)米,ABAF+BF10+2+4(14+2)17米电线杆的高度为17米【点评】本题考查了把实际问题转化为数学问题的能力,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形23已知:如图,在平面直角坐标系中,一次函数yax+b(a0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,2),tanBOC(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得BCE与BCO的面积相等,求出点E的坐标【分析】(1)过B点作BDx轴,垂足为D,由B(n,2)得BD2,由tanBOC,解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得BCE与BCO的面积相等,只需要CECO即可,根据直线AB解析式求CO,再确定E点坐标【解答】解:(1)过B点作BDx轴,垂足为D,B(n,2),BD2,在RtOBD中,tanBOC,即,解得OD5,又B点在第三象限,B(5,2),将B(5,2)代入y中,得kxy10,反比例函数解析式为y,将A(2,m)代入y中,得m5,A(2,5),将A(2,5),B(5,2)代入yax+b中,得,解得则一次函数解析式为yx+3;(2)由yx+3得C(3,0),即OC3,SBCESBCO,CEOC3,OE6,即E(6,0)【点评】本题考查了反比例函数的综合运用关键是通过解直角三角形确定B点坐标,根据反比例函数图象上点的坐标特求A点坐标,求出反比例函数解析式,一次函数解析式五、解答题(每题10分,共20分)24如图,在RtABC中,C90°,BAC的角平分线AD交BC于D(1)动手操作:利用尺规作O,使O经过点A、D,且圆心O在AB上;并标出O与AB的另一个交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,判断直线BC与O的位置关系,并说明理由;若AB6,BD2,求线段BD、BE与劣弧所围成的图形面积(结果保留根号和)【分析】(1)根据题意得:O点应该是AD垂直平分线与AB的交点;(2)由BAC的角平分线AD交BC边于D,与圆的性质可证得ACOD,又由C90°,则问题得证;设O的半径为r则在RtOBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:SODBS扇形ODE2”【解答】解:(1)如图1;(2)如图1,连接OD,OAOD,OADADO,BAC的角平分线AD交BC边于D,CADOAD,CADADO,ACOD,C90°,ODB90°,ODBC,即直线BC与O的切线,直线BC与O的位置关系为相切;(2)如图2,设O的半径为r,则OB6r,又BD2,在RtOBD中,OD2+BD2OB2,即r2+(2 )2(6r)2,解得r2,OB6r4,DOB60°,S扇形ODE,SODBODBD×2×22,线段BD、BE与劣弧DE所围成的图形面积为:SODBS扇形ODE2【点评】此题主要考查了切线的判定与性质以及扇形面积与三角形面积的求解方法等知识,注意数形结合思想的应用是解答此题的关键25如图,在平面直角坐标系中,顶点为M的抛物线是由抛物线yx23向右平移1个单位得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3(1)写出以M为顶点的抛物线解析式及点A、B、M的坐标;(2)连接AB,AM,BM,求tanABM;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x轴正半轴的夹角为,当ABM时,求点P坐标【分析】(1)由平移可得y(x1)23,求出解析式即可求解各点坐标;(2)求出MB2,AM,AB3,利用勾股定理可知ABM是直角三角形,即可求解;(3)由已知可知tan,求出t的值即可【解答】解:(1)抛物线yx23向右平移1个单位得到y(x1)23x22x2,M(1,3),令x0,则y2,A(0,2),点B在抛物线上,且横坐标为3,B(3,1);(2)M(1,3),A(0,2),B(3,1),MB2,AM,AB3,MB2AM2+AB2,ABM是直角三角形,MAB90°,tanABM;(3)设P(t,t22t2),点P位于对称轴的右侧,t1,PO与x轴正半轴的夹角为,P点在第一象限,ABM,tan,t3或t(舍),P(3,1)【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,灵活应用勾股定理逆定理是解题的关键中文字体名称汉仪仿宋简01字体说明稻壳儿文字模板使用说明(本页为说明页,用户使用模板时可删除本页内容)02删除页面使用本套模板中,若要删除多余空白页时,具体操作如下:方法二:3、再次按Delete键即可删除空白页。2、在空白页光标处,按Shift+Backspace键。1、删除多余页面的文本内容,成为空白页。2、点击开始选项卡下的显示/隐藏编辑标记按钮。1. 在分页符的后面点击光标,然后按Delete删除键即可。1、删除多余页面的文本内容,成为空白页。方法一:【说明】模板中使用的字体仅限于个人学习、研究或欣赏目的使用,如需商用请您自行向版权方购买、获取商用版权。