282解直角三角形(第3课时)2.ppt
例例1.如图,为了测量电线杆的高度如图,为了测量电线杆的高度AB,在离电,在离电线杆线杆22.7米的米的C处,用高处,用高1.20米的测角仪米的测角仪CD测测得电线杆顶端得电线杆顶端B的仰角的仰角a22,求电线杆求电线杆AB的高(精确到的高(精确到0.1米)米)19.4.4 1.2022.7仰角和俯角仰角和俯角铅铅直直线线水平线水平线视线视线视线视线仰角仰角俯角俯角在进行测量时,在进行测量时,从下向上看,视线与水平线的夹角叫做从下向上看,视线与水平线的夹角叫做仰角仰角;从上往下看,视线与水平线的夹角叫做从上往下看,视线与水平线的夹角叫做俯角俯角. .例例1.如图,为了测量电线杆的高度如图,为了测量电线杆的高度AB,在离电,在离电线杆线杆22.7米的米的C处,用高处,用高1.20米的测角仪米的测角仪CD测测得电线杆顶端得电线杆顶端B的仰角的仰角a22,求电线杆求电线杆AB的高(精确到的高(精确到0.1米)米)19.4.4 1.2022.722E例例2:热气球的探测器热气球的探测器显示显示,从热气球看一栋从热气球看一栋高楼顶部的仰角为高楼顶部的仰角为30,看这栋高楼底部看这栋高楼底部的俯角为的俯角为60,热气球热气球与高楼的水平距离为与高楼的水平距离为120m,这栋高楼有多这栋高楼有多高高? (结果保留小数(结果保留小数点后一位)点后一位) =30=60120ABCD 如图如图,有两建筑物有两建筑物,在甲建筑物上从在甲建筑物上从A到到E点挂点挂一长为一长为30米的宣传条幅米的宣传条幅,在乙建筑物的顶部在乙建筑物的顶部D点测点测得条幅顶端得条幅顶端A点的仰角为点的仰角为45,条幅底端条幅底端E点的俯点的俯角为角为30.求甲、乙两建筑物之间的水平距离求甲、乙两建筑物之间的水平距离BCAEDCB建筑物建筑物BC上有一旗杆上有一旗杆AB,由距由距BC 40m的的D处观处观察旗杆顶部察旗杆顶部A的仰角为的仰角为50,观察底部观察底部B的仰角的仰角为为45,求旗杆的高度求旗杆的高度(精确到精确到0.1m)BACD40(课本课本89页页)利用利用解直角三角形解直角三角形的知识的知识解决实际问题解决实际问题的的一般过程是一般过程是:1.将实际问题抽象为数学问题将实际问题抽象为数学问题;(画出平面图形画出平面图形,转化为解直角三角形的问题转化为解直角三角形的问题)2.根据条件的特点根据条件的特点,适当选用锐角三角函数等去解直角三角形适当选用锐角三角函数等去解直角三角形;3.得到数学问题的答案得到数学问题的答案;4.得到实际问题的答案得到实际问题的答案.例例3. 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距方向,距离灯塔离灯塔80海里的海里的A处,它沿正南方向航行一段时间后,处,它沿正南方向航行一段时间后,到达位于灯塔到达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海处,这时,海轮所在的轮所在的B处距离灯塔处距离灯塔P有多远?有多远? (精确到(精确到0.01海里)海里)6534PBCA 指南或指北的方向线与目标方向线构成小于指南或指北的方向线与目标方向线构成小于900的角的角,叫做方位角叫做方位角. 如图:点如图:点A在在O的北偏东的北偏东30 点点B在点在点O的南偏西的南偏西45(西南方向)(西南方向)3045BOA东东西西北北南南方位角方位角例例3. 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距方向,距离灯塔离灯塔80海里的海里的A处,它沿正南方向航行一段时间后,处,它沿正南方向航行一段时间后,到达位于灯塔到达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海处,这时,海轮所在的轮所在的B处距离灯塔处距离灯塔P有多远?有多远? (精确到(精确到0.01海里)海里)6534PBCA80 1.在解直角三角形及应用时经常接触到在解直角三角形及应用时经常接触到的一些概念的一些概念(仰角仰角,俯角俯角;方位角等方位角等) 2.实际问题向数学模型的转化实际问题向数学模型的转化 (解直角三角形解直角三角形)作业1、P92习题28.2第6、7题;2、同步练习P58-60(五)(六)