2612_反比例函数的图象与性质(1).ppt
第1课时26.1.2 反比例函数的图象与性质x xy yO1.1.进一步熟悉作函数图象的步骤,会画反比例函进一步熟悉作函数图象的步骤,会画反比例函数的图象数的图象. .2.2.体会函数的三种表示方法的相互转换,逐步提体会函数的三种表示方法的相互转换,逐步提高从函数图象获取信息的能力,探索并掌握反比高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质例函数的主要性质1 1什么是反比例函数?什么是反比例函数?2 2反比例函数的定义中需要注意什么?反比例函数的定义中需要注意什么?(1 1)k k 是非零常数是非零常数. .(2 2)xyxy = k = k一般地,形如一般地,形如 y = ( ky = ( k是常数是常数, k 0 ) , k 0 ) 的函数叫做反比例函数的函数叫做反比例函数k kx x3 3还记得一次函数的图像与性质吗?还记得一次函数的图像与性质吗?4 4、还记得二次函数的图像与性质吗?、还记得二次函数的图像与性质吗?5 5、如何画函数的图像?、如何画函数的图像?提问:提问:反比例函数的图像与性质反比例函数的图像与性质又又如何呢?如何呢? 这节课开始我们来一起探究吧。这节课开始我们来一起探究吧。 函数图象画法函数图象画法 描点法描点法列列表表描描点点连连线线 x画出反比例函数画出反比例函数 和和的函数图象的函数图象. y =x6y = x6 函数图象画法函数图象画法y =x6y = x6 描点法描点法列列表表描描点点连连线线123456-1-3-2-4-5-61234-1-2-3-40-6-556yx xy =x6y = x6123456-1-3-2-4-5-61234-1-2-3-40-6-556xy16233241.551.2616-1-6-2-3-3-1.5 -2-4-5-1.2-6-1-663-32-21.5-1.51.2-1.21-1y =x6y = x6【解析解析】 1 1列表:列表:2 2描点:描点:3 3连线:连线: x x-8-8-4-4-3-3-2-2-1-11 12 23 34 48 8342121-1-1-2-2-4-4-8-88 84 42 21 1213421以表中各组对应值作为点的坐标以表中各组对应值作为点的坐标, ,在直角坐在直角坐标系内描出相应的点标系内描出相应的点. .用光滑的曲线顺次连接各点用光滑的曲线顺次连接各点, ,就可得到图象就可得到图象. .1 1画出函数画出函数y = y = 的图象的图象-4-4x xx4y【跟踪训练跟踪训练】512346-4-1-2-3-5-61 245 63-6 -5-1-3-4-20 yx. y = -4x-7-7-87 8.78.-8123456-4-1-2-3-5-61 24 5 63-6-5-1-3-4-20 yx .y= 4x.xy0 1324 5 6123456-6-6-5-3-4-1-2-4-5-3-2-1. y = -4x.位置位置: : 函数函数 的两支曲线分别位于第一、三象限内的两支曲线分别位于第一、三象限内. .函数函数 的两支曲线分别位于第二、四象限内的两支曲线分别位于第二、四象限内. .4yx形状:形状: 反比例函数的图象是由两支曲线组成的反比例函数的图象是由两支曲线组成的. . 因此称反比例函数的图象为因此称反比例函数的图象为双曲线双曲线. .x4y【结论结论】反比例函数反比例函数 的图象在哪两个象限的图象在哪两个象限, ,由什么确定?由什么确定?kyx当当k0k0时时, ,两支曲线分别位于第一两支曲线分别位于第一, ,三象限内三象限内; ; 当当k0k0Kk1 16、已知反比例函数 (1)若函数的图象位于第一三象限, 则k_;(2)若在每一象限内,y随x增大而增大, 则k_.4kyx 4 7、考察函数考察函数 的图象的图象, ,当当x=-2x=-2时时,y=,y= _ _ , ,当当x-2x-2时时,y,y的取值范围是的取值范围是 _ _ ; ;当当y y-1-1时时,x,x的取值范围的取值范围是是 _ _ . .xy2-1-1y0-2x0 9、已知圆柱的侧面积是已知圆柱的侧面积是10cm10cm2 2, ,若圆柱底面半径为若圆柱底面半径为rcm,rcm,高为高为hcm,hcm,则则h h与与r r的函数图象大致是的函数图象大致是( ).( ).o(A) (B) (C) (D) (A) (B) (C) (D) r/cmh/cmor/cmh/cmor/cmh/cmor/cmh/cmC1.1.形状形状 反比例函数的图象是由两支曲线组成的,反比例函数的图象是由两支曲线组成的, 因此称反比例函数的图象为双曲线因此称反比例函数的图象为双曲线. .2.2.位置位置 当当k0k0时时, ,两支曲线分别位于第一、三象限内两支曲线分别位于第一、三象限内; ; 当当k0k0K0当k0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大. 图象性质见下表:图象性质y=xkw归纳:反比例函数的图象和性质: