高考专题突破三.pptx
高考专题突破三高考中的数列问题第五章数 列内容索引考点自测 快速解答 自查自纠题型分类 对接高考 深度剖析练出高分考点自测1.设等差数列an和等比数列bn首项都是1,公差与公比都是2,则 等于()A.54 B.56C.58 D.57解析解析由题意得,an12(n1)2n1,bn12n12n1, a1a2a4a8a16137153157.D1ba2ba3ba4ba5ba1ba5ba考点自测1 1解析答案2.已知等比数列的各项都为正数,且当n3时,a4a2n4102n,则数列lg a1,2lg a2,22lg a3,23lg a4,2n1lg an,的前n项和Sn等于()A.n2n B.(n1)2n11C.(n1)2n1 D.2n1解析解析等比数列an的各项都为正数,且当n3时,a4a2n4102n,a 102n,即an10n,2n1lg an2n1lg 10nn2n1,Sn122322n2n1,2Sn12222323n2n,得Sn12222n1n2n2n1n2n(1n)2n1,Sn(n1)2n1.C解析答案解析答案解析解析因为an1a1ann1ann,所以an1ann1.用累加法:ana1(a2a1)(anan1)解析答案答案答案B解析答案解析解析设等差数列an的首项为a1,公差为d.a55,S515,ana1(n1)dn.解析答案答案答案A5.设数列an的前n项和为Sn.已知a10,an1Sn3n,nN*.(1)Sn_;解析答案解析解析由an1Sn3n,得anSn13n1 (n2,且nN*),两式相减得an1anan23n1,an12an23n1.又a2S13a133,解析答案故an23n132n2.则an123n32n1Sn3n,Sn3n32n1 (n2,且nN*).S1a10也适合上式,Sn3n32n1 (nN*).答案答案3n32n1解析答案返回2k23|k|.即k23|k|20.当k0时,k23k20,解得1k2;当k0,可得an1an2.所以an是首项为3,公差为2的等差数列,通项公式为an2n1.解析答案解解由an2n1可知设数列bn的前n项和为Tn,则Tnb1b2bn解析答案3.已知数列an的前n项和Sn满足Sn2an(1)n(nN*).(1)求数列an的前三项a1,a2,a3;解析答案解析答案解解由Sn2an(1)n(nN*)得:Sn12an1(1)n1(n2),两式相减得:an2an12(1)n(n2),解析答案4.(2015湖南)设数列an的前n项和为Sn,已知a11,a22,且an23SnSn13, nN*.(1)证明:an23an;证明证明由条件,对任意nN*,有an23SnSn13,因而对任意nN*,n2,有an13Sn1Sn3.两式相减,得an2an13anan1,即an23an,n2.又a11,a22,所以a33S1S233a1(a1a2)33a1,故对一切nN*,an23an.解析答案(2)求Sn.解析答案数列a2n是首项a22,公比为3的等比数列.因此a2n13n1,a2n23n1.于是S2na1a2a2n(a1a3a2n1)(a2a4a2n)(133n1)2(133n1)解析答案3(133n1)3223(5 31),23(31),.2nnnn,是奇数是偶数解析答案(2)设annf(n),nN*,求证:a1a2a3an2;解析答案证明证明设Tn为an的前n项和,解析答案即a1a2a3an2.当n8时,bn0;当n9时,bn0;当n9时,bn0.当n8或9时,Sn取得最大值.解析答案返回更多精彩内容请登录: