浙教初中数学八上《3.3一元一次不等式》PPT课件 (11).ppt
不等式的基本性质:,不等式的基本性质1:,若a<b,b<c,则a<c.,不等式的基本性质2:,如果a>b,那么a+c>b+c;如果a>b,那么a-c>b-c.,不等式的基本性质3:,如果a>b,且c>0,那么ac>bc,如果a>b,且c<0,那么ac<bc。,3.3一元一次不等式,一元一次方程:方程的两边都是整式,只含有一个未知数;并且未知数的指数是一次,这样的方程叫做一元一次方程.,3、等号两边都是整式,1、只有一个未知数,2、未知数的指数是一次,特点:,(1)x=4 (2)3y=30,(4)1.5a+12=0.5a+1,请你找出这些不等式有哪些共同的特征?,火眼金睛,(1)x>4 (2)3y>30,1.5a+120.5a+1,请你找出这些不等式有哪些共同的特征?,一元一次不等式定义:,不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式叫做一元一次不等式。,特点: (1)不等号的两边都是整式 (2)只含有一个未知数 (3)未知数的最高次数是1次,下列不等式中,哪些是一元一次不等式?,(1)4<5.1,(2)5x+3<0,不是,是,不是,不是,(5)x>5,是,我们把能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。,把x=5代入不等式3x<18,不等式成立吗?,那能否说能使不等式成立的值就是x=5?,这样的值有无数个,x<6,不等式3x<18的解是,想一想1,x=6,x=7呢?,想一想2,求下列各不等式的解集,(1) X+530,比较,(1) X+5=3,(2) -3x=30,解:两边同时减去5得X+5-5=3-5 X=-2,解:两边同时除以-3得(-3x)÷(-3)=30÷(-3) X= -10,(1) X+5<3,解:两边同时减去5得X+5-5<3-5 X<-2,(2) -3x>30,解:两边同时除以-3得(-3x)÷(-3)<30÷(-3) X< -10,不等式基本性质2,不等式基本性质3,比较,(1) X+5<3,解:两边同时减去5得X+5-5<3-5 X<-2,(2) -3x>30,解:两边同时除以-3得(-3x)÷(-3)<30÷(-3) X< -10,不等式基本性质2,不等式基本性质3,解不等式就是利用不等式的基本性质,不等式变形成:x>a(或xa) x<a(或xa)xa,例1,解下列不等式,示范,解不等式,3x-1> 2x+4,解不等式7x-29x+3,把解表示在数轴上.,不等式的负整数解是x=-1和x=-2.,解: 先在不等式的两边同加上-9x,得 7x-9x-23 再在不等式的两边同加上2,得 7x-9x3+2. 合并同类项,得 -2x5 两边同除以-2,得 x,例2,并求出不等式的负整数解.,7x-29x+3,7x-9x3+2,把不等式中的任何一项的符号改变后,从不等号的一边移到另一边,所得到的不等式仍成立。也就是说,在解不等式时,移项法则同样适用.,-2x5,移项得,两边同除以-2,得 x,合并同类项,勇闯天涯,我选择 我喜欢,五个字母分别代表了五种难度的题目,请你选择,下列式子哪些是一元一次不等式?哪些不是一元一次不等式?,1、X>03、X >24、+>-35、x=-1,我选择 我喜欢,解下列一元一次不等式.,(1)-2x2x-3,解:两边同除以-2,得 xx ,即 x>4;,我选择 我喜欢,请你写出一个解为x>8的不等式,我选择 我喜欢,解不等式,(1)5x-4>4-3x (2)求出适合不等式0.5x-3>-14-2.5x的最大负整数,我选择 我喜欢,某电信公司手机收费有两种方案。方案一:月租50元,本地通话费0.40元/分;方案二:不收月租,本地通话费0.60元/分。张先生估计每月本地通话时间在250-300分(不包括250分)之间,问选择哪一种方案比较合算?,我选择 我喜欢,总结回顾,一、知识点二、依据三、注意点,m取何值时,关于x的方程,的解大于1。,课外延伸,作业: 作业本 课后作业,再 见,再见,