浙教初中数学九下《1.3 解直角三角形》PPT课件 (9).ppt
,1.3 解直角三角形(3),复习:,精确度:边长保留四个有效数字,角度精确到1.,两种情况:解直角三角形,只有下面两种情况: (1)已知两条边; (2)已知一条边和一个锐角,1. 解直角三角形. 在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形.,如图, 在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.,读一读,例1,如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a22°,求电线杆AB的高(精确到0.1米),你会解吗?,例1,如下图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用高1.20米的测角仪CD测得电线杆顶端B的仰角a22°,求电线杆AB的高(精确到0.1米),在RtBDE中, BEDE×tan a AC×tan aABBEAE AC×tan a CD9.171.2010.4(米)答: 电线杆的高度约为10.4米,如图,某飞机于空中A处探测到目标C,此时飞行高度AC1200米,从飞机上看地面控制点B的俯角 a1631,求飞机A到控制点B的距离.(精确到1米),如图所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角BAC为34°,并已知目高AD为1米算出旗杆的实际高度.(精确到1米),例2、学校操场上有一根旗杆,上面有一根开旗用的绳子(绳子足够长),王同学拿了一把卷尺,并且向数学老师借了一把含300的三角板去度量旗杆的高度。,(1)若王同学将旗杆上绳子拉成仰角为600,如图用卷尺量得BC=4米,则旗杆AB的高多少?,(2)若王同学分别在点C、点D处将旗杆上绳子分别拉成仰角为600、300,如图量出CD=8米,你能求出旗杆AB的长吗?,(3)此时他的数学老师来了一看,建议王同学只准用卷尺去量,你能给王同学设计方案完成任务吗?,例3 某海防哨所O发现在它的北偏西30 °,距离哨所500M的A处有一艘船向正东方向航行,经过3分时间后到达哨所东北方向的B处。问船从A处到B处的航速是每时多少KM(精确到1KM/h),例4. 为知道甲,乙两楼间的距离,测得两楼之间的距离为32.6m,从甲楼顶点A观测到乙楼顶D的俯角为35 ° 12 ,观测到乙楼底C的俯角为43 ° 24 .求这两楼的高度(精确到0.1m),1、船有无触礁的危险,如图,海中有一个小岛A,该岛四周10海里内暗礁.今有货轮四由西向东航行,开始在A岛南偏西550的B处,往东行驶20海里后到达该岛的南偏西250的C处.之后,货轮继续向东航行.,要解决这个问题,我们可以将其数学化,如图:,请与同伴交流你是怎么想的? 怎么去做?,你认为货轮继续向东航行途中会有触礁的危险吗?,练习,2、楼梯加长了多少,某商场准备改善原有楼梯的安全性能,把倾角由原来的400减至350,已知原楼梯的长度为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.01m).,练习,思考题,设计方案测量下面两幢楼的高度。写出需要的数据并画出示意图、给出计算方案。,