最全面二次函数图象和性质知识点总结(可编辑修改word版)(精华版).pdf
-
资源ID:20732163
资源大小:488.62KB
全文页数:13页
- 资源格式: PDF
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
最全面二次函数图象和性质知识点总结(可编辑修改word版)(精华版).pdf
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:一般式:yaxbxc2(a、b、c 为常数,a0)顶点式:ya xhk()2(a、h、k 为常数,a0),其中( h,k)为顶点坐标。交点式:ya xxxx()()12,其中xx12,是抛物线与 x 轴交点的横坐标,即一元二次方程axbxc20的两个根,且 a0, (也叫两根式)。 2. 二次函数yaxbxc2的图象二次函数yaxbxc2的图象是对称轴平行于(包括重合)y 轴的抛物线,几个不同的二次函数,如果a 相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。任意抛物线ya xhk()2可以由抛物线yax2经过适当的平移得到,移动规律可简记为: 左加右减,上加下减 ,具体平移方法如下表所示。在画yaxbxc2的图象时,可以先配方成ya xhk()2的形式,然后将yax2的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将yaxbxc2配成ya xhk()2的形式,这样可以确定开口方向,对称轴及顶点坐标。然后取图象与y 轴的交点( 0,c) ,及此点关于对称轴对称的点( 2h,c) ;如果图象与 x 轴有两个交点,就直接取这两个点(x1,0) ,(x2,0)就行了;如果图象与x 轴只有一个交点或无交点,那应该在对称轴两学习资料精品学习资料第 1 页,共 13 页侧取对称点,(这两点不是与 y 轴交点及其对称点),一般画图象找 5 个点。3. 二次函数的性质函数二次函数yaxbxc2a、b、c 为常数,a0ya xhk()2(a、h、k为常数,a0)a0a0a0a0图象(1) 抛物线开口向上,并向上无限延伸(1) 抛物线开口向下,并向下无限延伸(1) 抛物线开口向上,并向上无限延伸(1) 抛物线开口向下,并向下无限延伸性 (2) 对称轴是xba2,顶点是(baacba2442,)(2) 对称轴是xba2,顶点是(baacba2442,)(2) 对称轴是xh,顶点是(h,k)(2) 对称轴是xh,顶点是(h,k)质(3) 当xba2时,y随 x 的增大而减小;当xba2时,y 随 x的增大而增大(3) 当xba2时,y随 x 的增大而增大;当xba2时,y 随 x的增大而减小(3) 当xh时,y 随 x 的增大而减小;当xh 时,y 随x 的增大而增大。(3) 当 xh 时,y 随 x 的增大而增大;当xh 时,y 随x 的增大而减小(4) 抛物线有最低点,当xba2时,y 有最小值,yacba最小值442(4) 抛物线有最高点,当xba2时,y 有最大值,yacba最大值442(4) 抛物线有最低点,当 xh时,y 有最小值yk最小值(4) 抛物线有最高点,当xh 时,y 有最大值yk最大值 4. 求抛物线的顶点、对称轴和最值的方法配方法:将解析式yaxbxc2化为ya xhk()2的形式,顶点坐标为(h,k) ,对称轴为直线xh,若 a0,y 有最小值,当 xh 时,学习资料精品学习资料第 2 页,共 13 页yk最小值;若 a0,y 有最大值,当 xh 时,yk最大值。公式法:直接利用顶点坐标公式(baacba2442,) ,求其顶点;对称轴是直线xba2,若ayxbayacba02442, 有最小值,当时,;最小值若 a0,y 有最大值,当xbayacba2442时,最大值 5. 抛物线与 x 轴交点情况:对于抛物线yaxbxc a20()当bac240时,抛物线与 x 轴有两个交点,反之也成立。当bac240时,抛物线与 x 轴有一个交点,反之也成立,此交点即为顶点。当bac240时,抛物线与 x 轴无交点,反之也成立。二、考点归纳考点一求二次函数的解析式例1. 已知二次函数 f (x)满足 f (2) 1,f (1)1,且 f (x)的最大值是 8,试求 f (x) 。解答:法一:利用二次函数的一般式方程设 f (x)ax2bxc(a0) ,由题意学习资料精品学习资料第 3 页,共 13 页故得 f (x) 4x24x7。法二:利用二次函数的顶点式方程设 f (x)a(xm )2n由 f (2)f (1)可知其对称轴方程为,故 m ;又由 f (x)的最大值是 8可知, a25解答: 函数 f (x)4x2mx 5在区间 2,)上是增函数,则区间 2,)必在对称轴的右侧,从而,故 f (1)9m 25。选 A。说明: 解决此类问题结合函数图像显得直观。考点四二次函数的性质的应用学习资料精品学习资料第 4 页,共 13 页例4. 设的定义域是 n ,n1 (n 是自然数),试判断的值域中共有多少个整数?分析: 可以先求出值域,再研究其中可能有多少个整数。解答:的对称轴为,因为 n 是自然数,故,所以函数在 n ,n1 上是增函数。故故知:值域中共有 2n2个整数。说明: 本题利用了函数的单调性,很快求出了函数的值域,这是求函数值域的一个重要方法。考点五二次函数的最值例5. 试求函数在区间 1 ,3 上的最值。分析: 本题需就对称轴与区间的相对位置关系进行分类讨论:3。解答: 函数的对称轴I 、当3即时:函数在 1 ,3 上为减函数,故综上所述:当时,;当时,;当时,;当时,。学习资料精品学习资料第 5 页,共 13 页考点六方程的根或函数零点的分布问题例6. 已知二次方程的一个根比 1大,另一个根比 1小,试求的取值范围。解答: 设,则;例7. 当为何实数时,关于的方程(I )有两个正实根;(II )有一个正实根,一个负实根。解答: (I )设,由方程有两个正实根,结合图像可知:(II )设,结合图像可知:说明: 一元二次方程的根或二次函数零点的分布问题的处理主要思路是结合函数图像,考虑三个内容:根或零点所在区间端点的函数的正负、判别式及对称轴的位置。考点七三个 “二次”的关系例8. 已知关于的一元二次不等式的解集为,试解关于的一元二次不等式。解答:法一:由题意可知,一元二次不等式对应的一元二次方程的两个根是 1和2,故;又即关于的一元二次不等式的解集为。法二:,即关于的一元二次不等式的解集为。考点八二次函数的应用学习资料精品学习资料第 6 页,共 13 页yxO(第 4 题)DCB(4,4)A(1,4)例9. (2003北京春招)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元。未租出的车每辆每月需维护费50元。(I )当每辆车的月租金定为 3600元时,能租出多少辆车?(II )当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?解答: (I )当每辆车的月租金定为3600元时,未租出的车辆数为,故租出了 88辆;(II )设每辆车月租金定为元,则租赁公司的月收益为故当月租金定为 4050元时,租赁公司的月收益最大为307050元。三、综合练习1、小李从如图所示的二次函数cbxaxy2的图象中,观察得出了下面四条信息:(1)b24ac0;( 2)c1;( 3)ab0;( 4)a bc0. 你认为其中错误的有( )A. 2 个B. 3个C. 4 个D. 1 个第 1 题2. 已知二次函数)0(2acbxaxy经过点 M (-1,2 )和点 N(1,-2 ) ,交 x 轴于A,B两点,交y 轴于 C则()2b;该二次函数图像与y 轴交与负半轴 存在这样一个a,使得 M 、 A、C三点在同一条直线上若2, 1OCOBOAa则以上说法正确的有:ABCD3、在平面直角坐标系中,如果抛物线y2x2不动,而把x轴、y轴分别向上、向右平移2 个单位,那么在新坐标系下抛物线的解析式是 ( ) Ay2(x + 2)22 By2(x2)2 + 2 Cy2(x2)22 Dy2(x + 2)2 + 2学习资料精品学习资料第 7 页,共 13 页4. 如图,点A,B的坐标分别为(1,4 )和( 4, 4), 抛物线nmxay2)(的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为3,则点D的横坐标最大值为( ) A 3 B1 C5 D8 5. 抛物线cbxaxy2图像如图所示,则一次函数24bacbxy与反比例函数abcyx在同一坐标系内的图像大致为 ( )6. 把抛物线向上平移 2 个单位,那么所得抛物线与x轴的两个交点之间的距离是.7. 如图,菱形ABCD 的三个顶点在二次函数y=ax22ax+ (a0)的32图象上,点A、B分别是该抛物线的顶点和抛物线与y 轴的交点,则点 D的坐标为8. 老师给出一个y 关于 x 的函数,甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:当x2 时, y 随 x 的增大而减小;丁:当x0. 已知这四位同学叙述都正确。请写出满足上述所有性质的一个函数 _.9. 已知关于x 的函数 y( m 1)x22x m图像与坐标轴有且只有2 个交点,则 m 10. 如图,已知P的半径为2,圆心P在抛物线2112yx上运动,当P与x轴相切时,圆心P的坐标为 . 11. 如图,在第一象限内作射线OC, 与x轴的夹角为30o, 在射线OC上取一点A,过点A作AHx轴于点H. 在抛物线y=x2 (x0) 上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与AOH全等,则符合条件的点A的坐标是 _ .12. 我们知道,根据二次函数的平移规律,可以由简单的函数通过平移后得到较复杂的函数,事实上,对于其他函数也是如此。如一次函数,反比例函数等。请问123xxy可以由xy1通过 _平移得到。xxxxx第 7 题图B A C D x y O 第 10 题OxAyHCy=x2学习资料精品学习资料第 8 页,共 13 页13 如图,点P的坐标为( 2,) ,过点 P作 x 轴的平行线交y 轴于点 A,交双曲线23(x0) 于点 N;作 PM AN交双曲线(x0) 于点 M ,连结 AM.已知 PN=4.xkyxky(1)求 k 的值 . ( 3分)(2)求 APM的面积 . ( 3 分)14 如图,已知,是一次函数的图( 4)An,(24)B,ykxb象和反比例函数的图象的两个交点myx(1) 求反比例函数和一次函数的解析式;(2) 求直线与轴的交点的坐标及的面积;ABxCAOB(3) 求方程的解(请直接写出答案);0 xmbkx(4) 求不等式的解集(请直接写出答案). 0 xmbkx15. 如图,在直角坐标系xOy中,正方形OABC 的边长为2cm ,点 A、C分别在 x 轴、 y 轴的正半轴上。抛物线cbxxy2经过点 B、C。(1)求抛物线的解析式;(2)点 D 、E分别是 AB 、BC上的动点,且点D从点A开始,以1cm/s 的速度沿AB向点 B移动,同时点E从点 B开始,以1cm/s 的速度沿BC向点 C移动。运动 t 秒(t 2)后,能否在抛物线上找到一点P,使得四边形BEDP为平行四边形。如果能,请求出t 值和点 P的坐标;如果不能,请说明理由。Py?CB?学习资料精品学习资料第 9 页,共 13 页16 已知二次函数yaxbxcaba c2222040,其中,它的图象与x 轴只有一个交点,交点为A,与 y 轴交于点B ,且 AB=2 . (1)求二次函数解析式; (2)当 b0 时,过 A的直线 y=xm与二次函数的图象交于点C,在线段BC上依次取D、E两点,若DEBDEC222,试确定DAE的度数,并简述求解过程。17. 如图,在平面直角坐标系中,开口向下的抛物线与x 轴交于 A、B两点, D是抛物线的顶点, O为坐标原点 . A、B两点的横坐标分别是方程01242xx的两根,且cosDAB 22.(1)求抛物线的函数解析式;(2)作 AC AD , AC交抛物线于点C,求点 C的坐标及直线AC的函数解析式;(3)在( 2)的条件下,在x 轴上方的抛物线上是否存在一点P,使 APC的面积最大?如果存在,请求出点P的坐标和 APC 的最大面积;如果不存在,请说明理由.18. 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a0)经过( 1 0)A,、学习资料精品学习资料第 10 页,共 13 页(3 0)B,两点,抛物线与y轴交点为C,其顶点为D,连接 BD ,点 P是线段 BD上一个动点(不与B、 D重合) ,过点 P作y轴的垂线,垂足为E,连接 BE ( 1)求抛物线的解析式,并写出顶点D的坐标;( 2)如果 P点的坐标为(x,y) ,PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;( 3)在( 2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接 EF,把PEF沿直线 EF折叠,点P的对应点为P,请直接写出P点坐标,并判断点P是否在该抛物线上19. 已知:抛物线2yaxbxc经过点0,0O,7,4A,且对称轴l与x轴交于点5,0B.(1)求抛物线的表达式;(2)如图,点E、F分别是y轴、对称轴l上的点,且四边形EOBF是矩形,点55,2C是BF上一点,将BOC沿着直线OC翻折,B点与线段EF上的D点重合,求点的坐标;D(3)在( 2)的条件下,点G是对称轴l上的点,直线DG交CO于点H,:1: 4DOHDHCSS,求G点坐标 .112312331DyCBAP2ExOOBCDEFxy( 第 3 题图 )l学习资料精品学习资料第 11 页,共 13 页20. 如图,抛物线两点轴交于与BAxbxaxy,32,与y轴交于点C,且OAOCOB3(I )求抛物线的解析式;(II )探究坐标轴上是否存在点P,使得以点CAP,为顶点的三角形为直角三角形?若存在,求出P点坐标,若不存在,请说明理由;(III )直线131xy交y轴于D点,E为抛物线顶点若DBC,求,CBE的值21 如图,二次函数的图象经过点D(0,397) ,且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为 6.求二次函数的解析式;在该抛物线的对称轴上找一点P,使 PA+PD 最小,求出点P的坐标;在抛物线上是否存在点Q ,使 QAB与ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由学习资料精品学习资料第 12 页,共 13 页学习资料精品学习资料第 13 页,共 13 页