欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    初三下册数学人教版教案优质.docx

    • 资源ID:21052951       资源大小:18.90KB        全文页数:17页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    初三下册数学人教版教案优质.docx

    初三下册数学人教版教案初三下册数学人教版教案1 图形的旋转 1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题. 2.通过复习轴对称、平移的有关概念及性质,从生活中的数学起先,经验视察,产生概念,应用概念解决一些实际问题. 3.旋转的基本性质. 重点 旋转及对应点的有关概念及其应用. 难点 旋转的基本性质. 一、复习引入 (学生活动)请同学们完成下面各题. 1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形. 2.如图,已知ABC和直线l,请你画出ABC关于l的对称图形ABC. 3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质. (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质. (3)什么叫轴对称图形? 二、探究新知 我们前面已经复习轴对称等有关内容,生活中是否还有其它运动改变呢?回答是确定的,下面我们就来探讨. 1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了_度,分针转了_度,秒针转了_度. 2.再看我自制的似乎风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略) 3.第1,2两题有什么共同特点呢? 共同特点是假如我们把时钟、风车风轮当成一个图形,那么这些图形都可以围着某一固定点转动肯定的角度. 像这样,把一个图形围着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角. 假如图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点. 下面我们来运用这些概念来解决一些问题. 例1如图,假如把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A,B分别移动到什么位置? 解:(1)旋转中心是O,AOE,BOF等都是旋转角. (2)经过旋转,点A和点B分别移动到点E和点F的位置. 自主探究: 请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板. (分组探讨)依据图回答下面问题(一组举荐一人上台说明) 1.线段OA与OA,OB与OB,OC与OC有什么关系? 2.AOA,BOB,COC有什么关系? 3.ABC与ABC的形态和大小有什么关系? 老师点评:1.OA=OA,OB=OB,OC=OC,也就是对应点到旋转中心的距离相等. 2.AOA=BOB=COC,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角. 3.ABC和ABC形态相同和大小相等,即全等. 综合以上的试验操作得出: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋转角; (3)旋转前、后的图形全等. 例2如图,ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形. 分析:绕C点旋转,A点的对应点是D点,那么旋转角就是ACD,依据对应点与旋转中心所连线段的夹角等于旋转角,即BCB=ACD,又由对应点到旋转中心的距离相等,即CB=CB,就可确定B的位置,如图所示. 解:(1)连接CD; (2)以CB为一边作BCE,使得BCE=ACD; (3)在射线CE上截取CB=CB,则B即为所求的B的对应点; (4)连接DB,则DBC就是ABC绕C点旋转后的图形. 三、课堂小结 (学生总结,老师点评) 本节课应驾驭: 1.对应点到旋转中心的距离相等; 2.对应点与旋转中心所连线段的夹角等于旋转角; 3.旋转前、后的图形全等及其它们的应用. 四、作业布置 教材第6263页习题4,5,6. 初三下册数学人教版教案2 1、教材分析 (1)学问结构 (2)重点、难点分析 重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一. 难点:难点是“接”与“切”的含义,学生简单混淆;画三角形内切圆,学生不易画好. 2、教学建议 本节内容须要一个课时. (1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质; (2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学. 教学目标 : 1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念; 2、应用类比的数学思想方法探讨内切圆,逐步培育学生的探讨问题实力; 3、激发学生动手、动脑主动参加课堂教学活动. 教学重点: 三角形内切圆的作法和三角形的内心与性质. 教学难点 : 三角形内切圆的作法和三角形的内心与性质. 教学活动设计 (一)提出问题 1、提出问题:如图,你能否在ABC中画出一个圆?画出一个的圆?想一想,怎样画? 2、分析、探讨问题: 让学生动脑筋、想方法,使学生相识作三角形内切圆的实际意义. 3、解决问题: 例1 作圆,使它和已知三角形的各边都相切. 引导学生结合图,写出已知、求作,然后师生共同分析,找寻作法. 提出以下几个问题进行探讨: 作圆的关键是什么? 假设I是所求作的圆,I和三角形三边都相切,圆心I应满意什么条件? 这样的点I应在什么位置? 圆心I确定后半径如何找. A层学生自己用直尺圆规精确作图,并叙述作法;B层学生在老师指导下完成. 完成这个题目后,启发学生得出如下结论: 和三角形的各边都相切的圆可以作一个且只可以作出一个. (二)类比联想,学习新学问. 1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形. 2、类比: 名称 确定方法 图形 性质 外心(三角形外接圆的圆心) 三角形三边中垂线的交点 (1)OA=OB=OC; (2)外心不肯定在三角形的内部. 内心(三角形内切圆的圆心) 三角形三条角平分线的交点 (1)到三边的距离相等; (2)OA、OB、OC分别平分BAC、ABC、ACB; (3)内心在三角形内部. 3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形. 4、概念理解: 引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”. (三)应用与反思 例2 如图,在ABC中,ABC=50°,ACB=75°,点O是三角形的内心. 求BOC的度数 分析:要求BOC的度数,只要求出OBC和0CB的度数之和就可,即求l十3的度数.因为O是ABC的内心,所以OB和OC分别为ABC和BCA的平分线,于是有1十3= (ABC十ACB),再由三角形的内角和定理易求出BOC的度数. 解:(引导学生分析,写出解题过程) 例3 如图,ABC中,E是内心,A的平分线和ABC的外接圆相交于点D 求证:DE=DB 分析:从条件想,E是内心,则E在A的平分线上,同时也在ABC的平分线上,考虑连结BE,得出3=4. 从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法. 证明:连结BE. E是ABC的内心 又1=2 1=2 1+3=4+5 BED=EBD DE=DB 练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内. (四)小结 1.老师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该留意哪些问题? 2.学生回答的基础上,归纳总结: (1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念. (2)利用作三角形的内角平分线,随意两条角平分线的交点就是内切圆的圆心,交点到随意一边的距离是圆的半径. (3)在学习有关概念时,应留意区分“内”与“外”,“接”与“切”;还应留意“连结内心和三角形顶点”这一协助线的添加和应用. (五)作业 教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题. 探究活动 问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,B=90°. (1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm); (2)计算出的圆形纸片的半径(要求精确值). 提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心: 如图2,以AC为轴对折;对折ABC,折线交AC于O;使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径. (2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,r=. 初三下册数学人教版教案3 函数 一、教学目的 1.使学生理解自变量的取值范围和函数值的意义。 2.使学生理解求自变量的取值范围的两个依据。 3.使学生驾驭关于解析式为只含有一个自变量的简洁的整式、分式、二次根式的函数的自变量取值范围的求法,并会求其函数值。 4.通过求函数中自变量的取值范围使学生进一步理解函数概念。 二、教学重点、难点 重点:函数自变量取值的求法。 难点:函灵敏处变量取值的确定。 三、教学过程 复习提问 1.函数的定义是什么?函数概念包含哪三个方面的内容? 2.什么叫分式?当x取什么数时,分式x+2/2x+3有意义? (答:分母里含有字母的有理式叫分式,分母0,即x3/2。) 3.什么叫二次根式?使二次根式成立的条件是什么? (答:根指数是2的根式叫二次根式,使二次根式成立的条件是被开方数0。) 4.举出一个函数的实例,并指出式中的变量与常量、自变量与函数。 新课 1.结合同学举出的实例说明解析法的意义:用教学式子表示函数方法叫解析法。并指出,函数表示法除了解析法外,还有图象法和列表法。 2.结合同学举出的实例,说明函数的自变量取值范围有时要受到限制这就可以引出自变量取值范围的意义,并说明求自变量的取值范围的两个依据是: (1)自变量取值范围是使函数解析式(即是函数表达式)有意义。 (2)自变量取值范围要使实际问题有意义。 3.讲解P93中例2。并指出例2四个小题代表三类题型:(1),(2)题给出的是只含有一个自变量的整式;(3)题给出的是只含有一个自变量的分式;(4)题给出的是只含有一个自变量的二次根式。 推广与联想:请同学按上述三类题型自编3个题,并写出解答,同桌互对答案,老师评讲。 4.讲解P93中例3。结合例3引出函数值的意义。并指出两点: (1)例3中的4个小题归纳起来仍是三类题型。 (2)求函数值的问题实际是求代数式值的问题。 补充例题 求下列函数当x=3时的函数值: (1)y=6x-4; (2)y=-5x2; (3)y=3/7x-1; (4) 初三下册数学人教版教案4 一元二次方程 1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0),分清二次项及其系数、一次项及其系数与常数项等概念. 2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解. 重点 通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a0)和一元二次方程的解等概念,并能用这些概念解决简洁问题. 难点 一元二次方程及其二次项系数、一次项系数和常数项的识别. 活动1复习旧知 1.什么是方程?你能举一个方程的例子吗? 2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x-1(2)mx+n=0(3)x1+1=0(4)x2=1 3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念. A.0B.1C.2D.3 活动2探究新知 依据题意列方程. 1.教材第2页问题1. 提出问题: (1)正方形的大小由什么量确定?本题应当设哪个量为未知数? (2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简洁的形式吗?请说出整理之后的方程. 2.教材第2页问题2. 提出问题: (1)本题中有哪些量?由这些量可以得到什么? (2)竞赛队伍的数量与竞赛的场次有什么关系?假如有5个队参赛,每个队竞赛几场?一共有20场竞赛吗?假如不是20场竞赛,那么原委竞赛多少场? (3)假如有x个队参赛,一共竞赛多少场呢? 3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题: 本题须要设两个未知数吗?假如可以设一个未知数,那么方程应当怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3归纳概念 提出问题: (1)上述方程与一元一次方程有什么相同点和不同点? (2)类比一元一次方程,我们可以给这一类方程取一个什么名字? (3)归纳一元二次方程的概念. 1.一元二次方程:只含有_个未知数,并且未知数的最高次数是_,这样的_方程,叫做一元二次方程. 2.一元二次方程的一般形式是ax2+bx+c=0(a0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项. 提出问题: (1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么? (2)为什么要限制a0,b,c可以为0吗? (3)2x2-x+1=0的一次项系数是1吗?为什么? 3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根). 活动4例题与练习 例1在下列方程中,属于一元二次方程的是_. (1)4x2=81;(2)2x2-1=3y;(3)x21+x1=2; (4)2x2-2x(x+7)=0. 总结:推断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.留意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程. 例2教材第3页例题. 例3以-2为根的一元二次方程是() A.x2+2x-1=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=0 总结:推断一个数是否为方程的解,可以将这个数代入方程,推断方程左、右两边的值是否相等. 练习: 1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是_. 2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项. (1)4x2=81;(2)(3x-2)(x+1)=8x-3. 3.教材第4页练习第2题. 4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为_. 答案:1.a1;2.略;3.略;4.k=4. 活动5课堂小结与作业布置 课堂小结 我们学习了一元二次方程的哪些学问?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗? 作业布置 教材第4页习题21.1第17题. 初三下册数学人教版教案

    注意事项

    本文(初三下册数学人教版教案优质.docx)为本站会员(ylj18****41534)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开