苏科版八年级上册数学知识点精选.docx
苏科版八年级上册数学知识点苏科版八年级上册数学学问点 一次函数 一次函数的概念 1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数 2.一般地,我们把函数yc(c为常数)叫做常值函数 一次函数的图像 1.列表、描点、连线 2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距 3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b 4.一次函数ykxb(b0)的图像可以由正比例函数ykx的图像平移得到当b>0时,向上平移b个单位,当b<0时,向下平移b的肯定值个单位 5.一元一次不等式与一次函数之间的关系(看图) 一次函数的性质 1.一次函数ykxb(kb是常数,k¹0)具有以下性质: 当k>0时,函数值y随自变量x的值增大而增大 当k<0时,函数值y随自变量x的值增大而减小 如图所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);如图所示,当k>0,bO时,直线经过第一、三、四象限(直线不经过其次象限);如图所示,当kO,b>0时,直线经过第一、二、四象限(直线不经过第三象限); 如图所示,当kO,bO时,直线经过其次、三、四象限(直线不经过第一象限).20.4一次函数的应用 1.利用一次函数及图像解决实际问题 四边形 多边形 1.由平面内不在同始终线上的一些线段收尾顺次联结所组成的封闭图形傲慢做多边形 2.组成多边形每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点 3.多边形相邻两边所成的角叫做多边形的内角 4.对于一个多边形,画出它的随意一边所在的直线,假如其余个边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形 5.多边形的内角和定理:n边形的内角和等于(n-2)×180° 6.多边形的一个内角的邻补角叫做多边形的外角 7.对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的全部的外角的和叫做多边形的外角和 8.多边形的外角和等于360° 平行四边形 1.两组对边分别平行的四边形叫做平行四边形;用符号 2.(1)性质定理1:假如一个四边形是平行四边形,那么这个四边形的两组对边分别相等简述为:平行四边形的对边相等 (2)性质定理2:假如一个四边形是平行四边形,那么这个四边形的两组对角分别相等 简述为:平行四边形的对角相等 (3)夹在平行线间的平行线段相等 (4)性质定理3:假如一个四边形是平行四边形,那么这个四边形的两条对角线相互平分 (5)性质定理4:平行四边形是中心对称图形,对称中心是两条对角线的交点 3.(1)判定定理1:假如一个四边形两组对边分别相等,那么这个四边形是平行四边形简述为:两组对边分别相等的四边形是平行四边形 (2)判定定理2:假如一个四边形的一组对边平行且相等,那么这个四边形是平行四边形简述为:一组对边平行且相等的四边形是平行四边形 (3)判定定理3:假如一个四边形的两条对角线相互平分,那么这个四边形是平行四边形 简述为:对角线相互平分的四边形是平行四边形 (4)判定定理4:假如一个四边形的两组对角分别相等,那么这个四边形是平行四边形简述为:两组对角分别相等的四边形是平行四边形 特别的平行四边形 1.有一个内角是直角的平行四边形叫做矩形 2.有一组邻边相等的平行四边形叫做菱形 3.矩形的性质定理1:矩形的四个角都是直角 2:矩形的两条对角线相等 菱形的性质定理1:菱形的四条边都相等 2:菱形的对角线相互垂直,并且每一条对角线平分一组对角 4.矩形的判定定理1:有三个内角是直角的四边形是矩形 2:对角线相等的平行四边形是矩形 菱形的判定定理1:四条边都相等的四边形是菱形 2.:对角线相互垂直的平行四边形是菱形 5.有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形 6.正方形的判定定理1:有一组邻边相等的矩形是正方形 2:有一个内角是直角的菱形是正方形 7.正方形的性质定理1:正方形的四个角都是直角,四条边都相等 2:正方形的两条对角线相等,并相互垂直,每条对角线平分一组对角22.4梯形 1.一组对边平行而另一组对边不平行的四边形叫做梯形 2.梯形中,平行的两边叫做梯形的底(短上底;长下底);不平行的两边叫做梯形的腰;两底之间的距离叫做梯形的高 3.有一个角是直角的梯形叫做等腰梯形 4.两腰相等的梯形叫做等腰梯形 等腰梯形 1.等腰梯形性质定理1:等腰梯形在同一底商的两个内角相等 2.性质定理2.:等腰梯形的两条对角线相等 3.等腰梯形判定定理1:在同一底边上的两个内角相等的梯形是等腰梯形 4.判定定理2:对角线相等的梯形是等腰梯形 三角形、梯形的中位线 1.联结三角形两边中点的线段叫做三角形的中位线 2.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半 3.联结梯形两腰中点的线段叫做梯形的中位线 4.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半 平面对量 1.规定了方向的线段叫做有向线段,有向线段的方向是从一点到另一点的指向,这时线段的两个端点有依次,我们把前一点叫做起点,另一点叫做终点,画图时在终点处画上箭头表示它的方向 2.既有大小。又有方向的量叫做向量,向量的大小也叫做向量的长度(或向量的模) 3.方向相同且长度相等的两个向量叫做相等的量 4.方向相反且长度相等的两个向量叫做互为相反向量 5.方向相同或相反的两个向量叫做平行向量 22.8平面对量的加法 1.求两个向量的和向量的运算叫做向量的加法 2.求不平行的两个向量的和向量时,只要把其次个向量与第一个向量收尾相接,那么以第一个向量的起点为起点、其次个向量的终点为终点的向量就是和向量,这样的规定叫做向量加法的三角形法则 3.一般地,我们把长度为零的向量叫做零向量 4.向量的加法满意交换律、结合律 22.9平面对量的减法 1.已知两个向量的和及其中一个向量,求另一个向量的运算叫做向量的减法 2.在平面内任取一点,以这点为公共起点作出这两个向量,那么它们的差向量是以减向量的终点为起点、被减向量的终点为终点的向量;求两个向量的差向量的规定叫做向量减法的三角形法则 3.减去一个向量等于加上这个向量的相反向量 4.向量加法的平行四边形法则 概率初步 确定事务和随机事务 1.在肯定条件下必定出现的现象叫做必定事务 2.在肯定条件下必定不出现的现象叫做不行能事务 3.必定事务和不行能事务统称为确定事务 4.那些在肯定条件下可能出现也可能不出现的现象叫做随机时间,也称为不确定事务23.2事务发生的可能性 时间的概率 1.用来表示某事务发生的可能性大小的数叫做这个事务的概率 2.规定用0作为不行能事务的概率;用1作为必定时间的概率 3.事务A的概率我们记作P(A);对于随机事务A,可知0 4.假如一项可以反复进行的试验具有以下特点: (1)试验的结果是有限个,各种结果可能出现的机会是均等的; (2)任何两个结果不行能同时出现 那么这样的试验叫做等可能试验 5.一般地,假如一个试验共有n个等可能的结果,事务A包含其中的k个结果,那么事务A的概率P(A)=事务A包含的可能结果数/全部的可能结果总数=k/n 6.列举法、树状图、列表 数学如何自学 在学习新概念、新运算时,老师们总是通过已有学问自然而然过渡到新学问,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。 我们在课堂上听老师讲解,不光是学习新学问,更重要的是潜移默化老师的那种数学思维习惯,渐渐地培育起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感受良多。他说:我是教物理的,学生物理学得好,不是我教出来的,而是他们自己悟出来的。当然,校长是虚心的,但他说明白一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。 数学什么叫和什么叫差 差是数学运算的一种,特指两个数的减法的结果。和是指两个及两个以上同属性的事物相加所获得的新事物,也可以狭义地理解为两个数相加所得的结果。和的产生:加数+加数=和。 苏科版八年级上册数学学问点