数学教案板书设计精选.docx
数学教案板书设计数学教案板书设计1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:敏捷应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是敏捷应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上敏捷地将分式变形.三、例、习题的意图分析1.P7的例2是使学生视察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得留意的是:约分是要找准分子和分母的公因式,最终的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.老师要讲清方法,还要刚好地订正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不变更分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,变更其中任何两个,分式的值不变.“不变更分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:分析约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:分析通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.#710516数学教案板书设计2一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能娴熟地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能娴熟地求出分式有意义的条件,分式的值为零的条件.3.认知难点与突破方法难点是能娴熟地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有很多类似之处,从分数入手,探讨出分式的有关概念,同时还要讲清分式与分数的联系与区分.三、例、习题的意图分析本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽搁时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4思索让学生自己依次填出: , , , .为下面的视察供应详细的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?可以发觉,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.P5归纳顺理成章地给出了分式的定义.分式与分数有很多类似之处,探讨分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区分.希望老师留意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括全部的分数 .2. P5思索引发学生思索分式的分母应满意什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.留意只有满意了分式的分母不能为零这个条件,分式才有意义.即当B0时,分式 才有意义.3. P5例1填空是应用分式有意义的条件分母不为零,解出字母x的值.还可以利用这道题,不变更分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P12拓广探究中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必需同时满意两个条件:1分母不能为零;2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.四、课堂引入1.让学生填写P4思索,学生自己依次填出: , , , .2.学生看P3的问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用实践,与以航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着老师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.分析已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.提问假如题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1) (2) (3)分析 分式的值为0时,必需同时满意两个条件:1分母不能为零;2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.答案 (1)m=0 (2)m=2 (3)m=1六、随堂练习1.推断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义?(1) (2) (3)3. 当x为何值时,分式的值为0?(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x与y的差于4的商是 .2.当x取何值时,分式 无意义?3. 当x为何值时,分式 的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,2.(1)x-2 (2)x (3)x±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, , ; 整式:8x, a+b, ;分式: ,2. X = 3. x=-1#710517数学教案板书设计3一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 敏捷应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是敏捷应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上敏捷地将分式变形.三、例、习题的意图分析1.P7的例2是使学生视察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得留意的是:约分是要找准分子和分母的公因式,最终的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.老师要讲清方法,还要刚好地订正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不变更分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,变更其中任何两个,分式的值不变.“不变更分式的值,使分式的分子和分母都不含-号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:分析应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:分析 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:分析 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及全部因式的次幂的积,作为最简公分母.(补充)例5.不变更分式的值,使下列分式的分子和分母都不含“-”号., , , , 。分析每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时变更,分式的值不变.解: = , = , = , = , = 。六、随堂练习1.填空:(1) = (2) =(3) = (4) =2.约分:(1) (2) (3) (4)3.通分:(1) 和 (2) 和(3) 和 (4) 和4.不变更分式的值,使下列分式的分子和分母都不含“-”号.(1) (2) (3) (4)七、课后练习1.推断下列约分是否正确:(1) = (2) =(3) =02.通分:(1) 和 (2) 和3.不变更分式的值,使分子第一项系数为正,分式本身不带“-”号.(1) (2)八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1) (2) (3) (4)-2(x-y)23.通分:(1) = , =(2) = , =(3) = =(4) = =4.(1) (2) (3) (4)#710518数学教案板书设计4一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、重点、难点和难点的突破方法1、重点:会求一组数据的极差2、难点:本节课内容较简单接受,不存在难点。三、例习题的意图分析教材P151引例的意图(1)、主要目的是用来引入极差概念的(2)、可以说明极差在统计学家族的角色反映数据波动范围的量(3)、交待了求一组数据极差的方法。四、课堂引入:引入问题可以仍旧采纳教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。五、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1 可由极差计算公式干脆得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。问题2 涉及前一个学期统计学问首先应回忆复习已学学问。问题3答案并不,合理即可。六、随堂练习:1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .3、下列几个常见统计量中能够反映一组数据波动范围的是( )A.平均数 B.中位数 C.众数 D.极差4、一组数据X 、X X 的极差是8,则另一组数据2X +1、2X +1,2X +1的极差是( )A. 8 B.16 C.9 D.17答案:1. 497、3850 2. 4 3. D 4.B七、课后练习:1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )A. 0.4 B.16 C.0.2 D.无法确定在一次数学考试中,第一小组14名学生的成果与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成果是( )A. 87 B. 83 C. 85 D无法确定3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。5、某活动小组为使全小组成员的成果都要达到优秀,准备实施“以优帮困”安排,为此统计了上次测试各成员的成果(单位:分)90、95、87、92、63、54、82、76、55、100、45、80计算这组数据的极差,这个极差说明什么问题?将数据适当分组,做出频率分布表和频数分布直方图。答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成果优劣差距较大。(2)略20.2.2 方差(第一课时)一. 教学目标:1. 了解方差的定义和计算公式。2. 理解方差概念的产生和形成的过程。3. 会用方差计算公式来比较两组数据的波动大小。二. 重点、难点和难点的突破方法:1. 重点:方差产生的必要性和应用方差公式解决实际问题。2. 难点:理解方差公式3. 难点的突破方法:方差公式:S = ( - ) +( - ) +( - ) 比较困难,学生理解和记忆这个公式都会有肯定困难,以致应用时经常出现计算的错误,为突破这一难点,我支配了几个环节,将难点化解。(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生爱好和求知欲望。老师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择推断常常要去了解一组数据的波动程度,仅仅知道平均数是不够的。(2)波动性可以通过什么方式表现出来?第一环节中点明白为什么去了解数据的波动性,其次环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区分不大时,仅用画折线图方法去描述唯恐不会精确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。(3)第三环节 老师可以干脆对方差公式作分析和说明,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,老师也可以依据学生程度和课堂时间确定是否介绍平均差等可以反映数据波动大小的其他统计量。三. 例习题的意图分析:1. 教材P125的探讨问题的意图:(1).创设问题情境,引起学生的学习爱好和新奇心。(2).为引入方差概念和方差计算公式作铺垫。(3).介绍了一种比较直观的衡量数据波动大小的方法画折线法。(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。2. 教材P154例1的设计意图:(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是刚好复习,巩固对方差公式的驾驭。(2).例1的解题步骤也为学生做了一个示范,学生以后可以仿照例1的格式解决其他类似的实际问题。四.课堂引入:除采纳教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2022年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员依据平常竞赛成果选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感爱好一些。五. 例题的分析:教材P154例1在分析过程中应抓住以下几点:1. 题目中“整齐”的含义是什么?说明在这个问题中要探讨一组数据的什么?学生通过思索可以回答出整齐即波动小,所以要探讨两组数据波动大小,这一环节是明确题意。2. 在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中须要平均值,这个问题可以使学生明确利用方差计算步骤。3. 方差怎样去体现波动大小?这一问题的提出主要复习巩固方差,反映数据波动大小的规律。六. 随堂练习:1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?2. 段巍和金志强两人参与体育项目训练,近期的5次测试成果如下表所示,谁的成果比较稳定?为什么?测试次数 1 2 3 4 5段巍 13 14 13 12 13金志强 10 13 16 14 12参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐2.段巍的成果比金志强的成果要稳定。七. 课后练习:1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但S S ,所以确定 去参与竞赛。3. 甲、乙两台机床生产同种零件,10天出的次品分别是( )甲:0、1、0、2、2、0、3、1、2、4乙:2、3、1、2、0、2、1、1、2、1分别计算出两个样本的平均数和方差,依据你的计算推断哪台机床的性能较好?4. 小爽和小兵在10次百米跑步练习中成果如表所示:(单位:秒)小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8假如依据这几次成果选拔一人参与竞赛,你会选谁呢?答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙机床性能好4. =10.9、S =0.02;=10.9、S =0.008选择小兵参与竞赛。#710520数学教案板书设计5一、学习目标:1.多项式除以单项式的运算法则及其应用.2.多项式除以单项式的运算算理.二、重点难点:重点: 多项式除以单项式的运算法则及其应用难点: 探究多项式与单项式相除的运算法则的过程三、合作学习:(一) 回顾单项式除以单项式法则(二) 学生动手,探究新课1. 计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2. 提问:说说你是怎样计算的 还有什么发觉吗?(三) 总结法则1. 多项式除以单项式:先把这个多项式的每一项除以_,再把所得的商_2. 本质:把多项式除以单项式转化成_四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)(x+y)2-y(2x+y)-8x÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习: 教科书 练习五、小结1、单项式的除法法则2、应用单项式除法法则应留意:A、系数先相除,把所得的结果作为商的系数,运算过程中留意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只探讨整除的状况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要留意运算依次,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的依次进行.E、多项式除以单项式法则第三十四学时:14.2.1 平方差公式一、学习目标:1.经验探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点: 平方差公式的推导和应用难点: 理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?(1)2022×1999 (2)998×1002导入新课: 计算下列多项式的积.(1)(x+1)(x-1) (2)(m+2)(m-2)(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)结论:两个数的和与这两个数的差的积,等于这两个数的平方差.即:(a+b)(a-b)=a2-b2四、精讲精练例1:运用平方差公式计算:(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)例2:计算:(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)随堂练习计算:(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)五、小结:(a+b)(a-b)=a2-b2第三十五学时:4.2.2. 完全平方公式(一)一、学习目标:1.完全平方公式的推导及其应用.2.完全平方公式的几何说明.二、重点难点:重点: 完全平方公式的推导过程、结构特点、几何说明,敏捷应用难点: 理解完全平方公式的结构特征并能敏捷应用公式进行计算三、合作学习.提出问题,创设情境一位老人特别喜爱孩子.每当有孩子到他家做客时,老人都要拿出糖果款待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)其次天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?.导入新课计算下列各式,你能发觉什么规律?(1)(p+1)2=(p+1)(p+1)=_;(2)(m+2)2=_;(3)(p-1)2=(p-1)(p-1)=_;(4)(m-2)2=_;(5)(a+b)2=_;(6)(a-b)2=_.两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2四、精讲精练例1、应用完全平方公式计算:(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2例2、用完全平方公式计算:(1)1022 (2)992数学教案