九年级数学下册第二十六章《反比例函数》PPT课件.ppt
26.1 反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,26.1.1 反比例函数,新课标人教版九年级数学下册,1. 理解并掌握反比例函数的概念. (重点)2. 从实际问题中抽象出反比例函数的概念,能根据已知 条件确定反比例函数的解析式. (重点、难点),学习目标,导入新课,情境引入,欣赏视频:,生活中我们常常通过控制电阻的变化来实现舞台灯光的效果. 在电压 U 一定时,当 R 变大时,电流 I 变小,灯光就变暗,相反,当 R 变小时,电流 I 变大,灯光变亮. 你能写出这些量之间的关系式吗?,当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?,讲授新课,下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.,合作探究,(1) 京沪线铁路全程为1463 km,某次列车的平均速 度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;,(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草 坪,草坪的长 y (单位:m) 随宽 x (单位:m)的 变化而变化;,(3) 已知北京市的总面积为1.68×104 km2 ,人均占 有面积 S (km2/人) 随全市总人口 n (单位:人) 的 变化而变化.,观察以上三个解析式,你觉得它们有什么共同特点?,问题:,都具有 的形式,其中 是常数,分式,分子,(k为常数,k 0) 的函数,叫做反比例函数,其中 x 是自变量,y 是函数.,一般地,形如,反比例函数 (k0) 的自变量 x 的取值范围是什么?,思考:,因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.,但实际问题中,应根据具体情况来确定反比例函数自变量的取值范围.,例如,在前面得到的第一个解析式 中,t 的取值范围是 t0,且当 t 取每一个确定的值时,v 都有唯一确定的值与其对应.,反比例函数除了可以用 (k 0) 的形式表示,还有没有其他表达方式?,想一想:,反比例函数的三种表达方式:(注意 k 0),下列函数是不是反比例函数?若是,请指出 k 的值.,是,k = 3,不是,不是,不是,练一练,是,,例1 已知函数 是反比例函数,求 m 的值.,典例精析,解得 m =2.,方法总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中 x 的次数为1,且系数不等于0.,解:因为 是反比例函数,,所以,2m2 + 3m3=1,2m2 + m10.,2. 已知函数 是反比例函数,则 k 必须满足 .,1. 当m= 时, 是反比例函数.,k2 且 k1,±1,练一练,例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.(1) 写出 y 关于 x 的函数解析式;,解:设 . 因为当 x=2时,y=6,所以有,解得 k =12.,因此,(2) 当 x=4 时,求 y 的值.,解:把 x=4 代入 ,得,方法总结:用待定系数法求反比例函数解析式的一般步骤:设出含有待定系数的反比例函数解析式,将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;解方程,求出待定系数; 写出反比例函数解析式.,已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.,(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值,练一练,(2) 当 x = 7 时,,所以有 ,解得 k =16,因此 .,解:(1) 设 ,因为当 x = 3 时,y =4 ,,例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100km/h 时视野的度数.,当 v=100 时,f =40.所以当车速为100km/h 时视野为40度.,解:设 . 由题意知,当 v =50时,f =80,,解得 k =4000.,因此,所以,例4 如图,已知菱形 ABCD 的面积为180,设它的两条对角线 AC,BD的长分别为x,y. 写出变量 y与 x 之间的关系式,并指出它是什么函数.,解:因为菱形的面积等于两条对角线长乘积的一半,,所以,所以变量 y与 x 之间的关系式为 ,它是反比例函数.,A. B. C. D.,1. 下列函数中,y 是 x 的反比例函数的是 ( ),A,当堂练习,2. 生活中有许多反比例函数的例子,在下面的实例中, x 和 y 成反比例函数关系的有 ( ), x人共饮水10 kg,平均每人饮水 y kg;底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m3;用铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 yA. 1个 B. 2个 C. 3个 D. 4个,B,3. 填空 (1) 若 是反比例函数,则 m 的取值范围 是 . (2) 若 是反比例函数,则m的取值范 围是 . (3) 若 是反比例函数,则m的取值范围 是 .,m 1,m 0 且 m 2,m = 1,4. 已知变量 y 与 x 成反比例,且当 x = 3时,y =4. (1) 写出 y 关于 x 的函数解析式; (2) 当 y=6 时,求 x 的值.,解:(1) 设 . 因为当 x = 3时,y =4,,解得 k =12.,因此,y 关于 x 的函数解析式为,所以有,(2) 把 y=6 代入 ,得,解得 x =2.,5. 小明家离学校 1000 m,每天他往返于两地之间,有 时步行,有时骑车假设小明每天上学时的平均速 度为 v ( m/min ),所用的时间为 t ( min ) (1) 求变量 v 和 t 之间的函数关系式;,解: (t>0),(2) 小明星期二步行上学用了 25 min,星期三骑自行 车上学用了 8 min,那么他星期三上学时的平均 速度比星期二快多少?,1254085 ( m/min )答:他星期三上学时的平均速度比星期二快 85 m/min.,解:当 t25 时, ;,当 t8 时, .,能力提升:,6. 已知 y = y1+y2,y1与 (x1) 成正比例,y2 与 (x + 1) 成 反比例,当 x=0 时,y =3;当 x =1 时,y = 1,求:,(1) y 关于 x 的关系式;,解:设 y1 = k1(x1) (k10), (k20),,则 ., x = 0 时,y =3;x =1 时,y = 1,,3=k1+k2 ,,k1=1,k2=2.,(2) 当 x = 时,y 的值.,解:把 x = 代入 (1) 中函数关系式,得 y =,课堂小结,建立反比例函数模型,用待定系数法求反比例函数解析式,反比例函数:定义/三种表达方式,26.1.2 反比例函数的图象和性质,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 反比例函数的图象和性质,新课标人教版九年级数学下册,学习目标,1. 经历画反比例函数的图象、归纳得到反比例函数的 图象特征和性质的过程 (重点、难点)2. 会画反比例函数图象,了解和掌握反比例函数的图 象和性质. (重点)3. 能够初步应用反比例函数的图象和性质解题. (重点、 难点),导入新课,情境引入,孙杨 2017游泳世锦赛 200米 自由泳夺冠精彩回放,7 月 30 日,2017 游泳世锦赛在西班牙布达佩斯的多瑙河体育中心落下帷幕. 在 8 天的争夺中,中国代表团不断创造佳绩,以 12 金 12 银 6 铜的成绩排名奖牌榜第二. 孙杨在此次世锦赛中收获了个人世锦赛首枚200 米自由泳金牌. 回顾我们上一课的学习内容,你能写出 200米自由泳比赛中,孙杨游泳所用的时间 t(s) 和游泳速度 v(m/s) 之间的数量关系吗? 试一试,你能在坐标轴中画出这个函数的图象吗?,讲授新课,例1 画反比例函数 与 的图象.,合作探究,提示:画函数的图象步骤一般分为:列表描点连线. 需要注意的是在反比例函数中自变量 x 不能为 0.,解:列表如下:,1,1.2,1.5,2,3,6,6,3,2,1.5,1.2,1,2,2.4,3,4,6,6,4,3,2.4,2,O,2,描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点,5,6,x,y,4,3,2,1,1,2,3,4,5,6,3,4,1,5,6,1,2,3,4,5,6,连线:用光滑的曲线顺次连接各点,即可得 的图象,x 增大,O,2,5,6,x,y,4,3,2,1,1,2,3,4,5,6,3,4,1,5,6,1,2,3,4,5,6,观察这两个函数图象,回答问题:,思考:,(1) 每个函数图象分 别位于哪些象限?(2) 在每一个象限内, 随着x的增大,y 如何变化?你能由它们的解析式说明理由吗?,y 减小,(3) 对于反比例函数 (k0),考虑问题(1)(2), 你能得出同样的结论吗?,由两条曲线组成,且分别位于第一、三象限 它们与 x 轴、y 轴都不相交;在每个象限内,y 随 x 的增大而减小.,反比例函数 (k0) 的图象和性质:,归纳:,1. 反比例函数 的图象大致是 ( ),C,y,o,B.,x,o,D.,练一练,例2 反比例函数 的图象上有两点 A(x1,y1),B(x2, y2),且A,B 均在该函数图象的第一象限部分,若 x1 x2,则 y1与y2的大小关系为 ( ),A. y1 > y2,B. y1 = y2,C. y1 < y2,D. 无法确定,C,观察与思考,当 k =2,4,6时,反比例函数 的图象,有哪些共同特征?,回顾上面我们利用函数图象,从特殊到一般研究反比例函数 (k0) 的性质的过程,你能用类似的方法研究反比例函数 (k0)的图象和性质吗?,反比例函数 (k0) 的图象和性质:,由两条曲线组成,且分别位于第二、四象限 它们与x轴、y轴都不相交;在每个象限内,y随x的增大而增大.,归纳:,(1) 当 k > 0 时,双曲线的两支分别位于第一、三 象限,在每一象限内,y 随 x 的增大而减小;,(2) 当 k < 0 时,双曲线的两支分别位于第二、四 象限,在每一象限内,y 随 x 的增大而增大.,一般地,反比例函数 的图象是双曲线,它具有以下性质:,点(2,y1)和(3,y2)在函数 上,则y1 y2 (填“>”“<”或“=”).,<,练一练,例3 已知反比例函数 ,在每一象限内,y 随 x 的增大而增大,求a的值.,解:由题意得a2+a7=1,且a1<0 解得 a=3.,练一练,已知反比例函数 在每个象限内,y 随着 x 的增大而减小,求 m 的值,解:由题意得 m210=1,且 3m80 解得 m=3.,当堂练习,1. 反比例函数 的图象在 ( ),A. 第一、二象限 B. 第一、三象限C. 第二、三象限 D.第二、四象限,B,2. 在同一直角坐标系中,函数 y = 2x 与 的 图象大致是 ( ),A.,B.,C.,D.,B,3. 已知反比例函数 的图象在第一、三象 限内,则m的取值范围是_.,4. 下列关于反比例函数 的图象的三个结论: (1) 经过点 (1,12) 和点 (10,1.2); (2) 在每一个象限内,y 随 x 的增大而减小; (3) 双曲线位于二、四象限. 其中正确的是 (填序号).,(1)(3),m 2,5. 已知反比例函数 的图象过点(2,3),图象上有两点 A (x1,y1),B (x2,y2), 且 x1 > x2 > 0,则 y1y2 0.,6. 已知反比例函数 y = mxm²5,它的两个分支分别在 第一、第三象限,求 m 的值.,解:因为反比例函数 y = mxm²5 的两个分支分别在第 一、第三象限,,所以有,解得 m=2.,能力提升:,7. 点 (a1,y1),(a1,y2)在反比例函数 (k0) 的图象上,若y1y2,求a的取值范围.,解:由题意知,在图象的每一支上,y 随 x 的增大而 减小. 当这两点在图象的同一支上时, y1y2,a1a+1, 无解; 当这两点分别位于图象的两支上时, y1y2,必有 y10y2. a10,a+10, 解得:1a1. 故 a 的取值范围为:1a1,图象位于第一、三象限,图象位于第二、四象限,在每个象限内,y 随 x 的增大而减小,在每个象限内,y 随x 的增大而增大,课堂小结,26.1.2 反比例函数的图象和性质,导入新课,讲授新课,当堂练习,课堂小结,第2课时 反比例函数的图象和性质的综合运用,第二十六章 反比例函数,新课标人教版九年级数学下册,学习目标,1. 理解反比例函数的系数 k 的几何意义,并将其灵活 运用于坐标系中图形的面积计算中. (重点、难点)2. 能够解决反比例函数与一次函数的综合性问题. (重 点、难点)3. 体会“数”与“形”的相互转化,学习数形结合的思想 方法,进一步提高对反比例函数相关知识的综合运 用能力. (重点、难点),导入新课,反比例函数的图象是什么?,反比例函数的性质与 k 有怎样的关系?,反比例函数的图象是双曲线,当 k > 0 时,两条曲线分别位于第一、三象限,在每个象限内,y 随 x 的增大而减小;,当 k < 0 时,两条曲线分别位于第二、四象限,在每个象限内,y 随 x 的增大而增大.,复习引入,问题1,问题2,典例精析,例1 已知反比例函数的图象经过点 A (2,6).(1) 这个函数的图象位于哪些象限?y 随 x 的增大如 何变化?,解:因为点 A (2,6) 在第一象限,所以这个函数的 图象位于第一、三象限; 在每一个象限内,y 随 x 的增大而减小.,(2) 点B(3,4),C( , ),D(2,5)是否在这个 函数的图象上?,解:设这个反比例函数的解析式为 ,因为点 A (2,6)在其图象上,所以有 ,解得 k =12.,因为点 B,C 的坐标都满足该解析式,而点 D的坐标不满足,所以点 B,C 在这个函数的图象上,点 D 不在这个函数的图象上.,所以反比例函数的解析式为 .,练一练,已知反比例函数 的图象经过点 A (2,3) (1) 求这个函数的表达式;,解: 反比例函数 的图象经过点 A(2,3), 把点 A 的坐标代入表达式,得 ,,解得 k = 6. 这个函数的表达式为 .,(2) 判断点 B (1,6),C(3,2) 是否在这个函数的 图象上,并说明理由;,解:分别把点 B,C 的坐标代入反比例函数的解析 式,因为点 B 的坐标不满足该解析式,点 C 的坐标满足该解析式, 所以点 B 不在该函数的图象上,点 C 在该函 数的图象上,(3) 当 3< x <1 时,求 y 的取值范围,解: 当 x = 3时,y =2; 当 x = 1时,y =6,且 k > 0, 当 x < 0 时,y 随 x 的增大而减小, 当 3 < x < 1 时,6 < y < 2.,(1) 图象的另一支位于哪个象限?常数 m 的取值范围 是什么?,例2 如图,是反比例函数 图象的一支. 根据图象,回答下列问题:,解:因为这个反比例函数图象的一 支位于第一象限,所以另一支 必位于第三象限.,由因为这个函数图象位于第一、三象限,所以m50,解得m5.,(2) 在这个函数图象的某一支上任取点 A (x1,y1) 和 点B (x2,y2). 如果x1x2,那么 y1 和 y2 有怎样的 大小关系?,解:因为 m5 0,所以在这个函数图象的任一支 上,y 都随 x 的增大而减小,因此当x1x2时, y1y2.,练一练,如图,是反比例函数 的图象,则 k 的值可以是 ( ),A1 B3 C1 D0,B,1. 在反比例函数 的图象上分别取点P,Q 向 x 轴、y 轴作垂线,围成面积分别为S1,S2的矩形, 填写下页表格:,合作探究,5,P,S1,S2,4,4,S1=S2,S1=S2=k,5,4,3,2,1,4,3,2,3,2,4,5,1,Q,2. 若在反比例函数 中也 用同样的方法分别取 P,Q 两点,填写表格:,4,4,S1=S2,S1=S2=k,S1,S2,由前面的探究过程,可以猜想:,若点P是 图象上的任意一点,作 PA 垂直于 x 轴,作 PB 垂直于 y 轴,矩形 AOBP 的面积与k的关系是S矩形 AOBP=|k|.,S,我们就 k < 0 的情况给出证明:,设点 P 的坐标为 (a,b),A,B,点 P (a,b) 在函数 的图象上,, ,即 ab=k., S矩形 AOBP=PB·PA=a·b=ab=k;,若点 P 在第二象限,则 a0,,若点 P 在第四象限,则 a>0,b<0,, S矩形 AOBP=PB·PA=a· (b)=ab=k.,综上,S矩形 AOBP=|k|.,自己尝试证明 k > 0的情况.,点 Q 是其图象上的任意一 点,作 QA 垂直于 y 轴,作 QB 垂直于x 轴,矩形AOBQ 的面积与 k 的关系是 S矩形AOBQ= . 推理:QAO与QBO的 面积和 k 的关系是 SQAO=SQBO= .,Q,对于反比例函数 ,,A,B,|k|,归纳:,反比例函数的面积不变性,A. SA >SB>SC B. SA<SB<SCC. SA =SB=SC D. SA<SC<SB,如图,在函数 (x0)的图像上有三点A,B ,C,过这三点分别向 x 轴、y 轴作垂线,过每一点所作的两条垂线与x轴、 y轴围成的矩形的面积分别为SA ,SB,SC,则 ( ),C,做一做,例3 如图,点A在反比例函数 的图象上,AC垂直 x 轴于点 C,且 AOC 的面积为 2,求该反比例函数的表达式,解:设点 A 的坐标为(xA,yA),点 A 在反比例函数 的图象上, xA·yAk, SAOC ·k2, k4,反比例函数的表达式为,1. 如图,过反比例函数 图象上的一点 P,作 PAx 轴于A. 若POA 的面积为 6,则 k = .,12,提示:当反比例函数图象在第二、四象限时,注意 k0.,练一练,2. 若点 P 是反比例函数图象上的一点,过点 P 分别向 x 轴、y 轴作垂线,垂足分别为点 M,N,若四边形 PMON 的面积为 3,则这个反比例函数的关系式是 .,或,例4 如图,P,C是函数 (x>0) 图像上的任意两点,PA,CD 垂直于 x 轴. 设 POA 的面积为 S1,则 S1 = ;梯形CEAD 的面积为 S2,则 S1 与 S2 的大小关系是 S1 S2;POE 的面积 S3 和 S2 的大小关系是S2 S3.,2,S1,S2,S3,如图,直线与双曲线交于 A,B 两点,P 是AB 上的点, AOC 的面积 S1、 BOD 的面积 S2、 POE 的面积 S3 的大小关系为 .,S1 = S2 < S3,练一练,解析:由反比例函数面积的不变性易知 S1 = S2. PE 与双曲线的一支交于点 F,连接 OF,易知,SOFE = S1 = S2,而 S3SOFE,所以 S1,S2,S3的大小关系为S1 = S2 < S3,F,S1,S2,S3,y,D,B,A,C,x,例5 如图,点 A 是反比例函数 (x0)的图象上任意一点,AB/x 轴交反比例函数 (x0) 的图象于点 B,以 AB 为边作平行四边形 ABCD,其中点 C,D 在 x 轴上,则 S ABCD =_.,3,2,5,方法总结:解决反比例函数有关的面积问题,可以把原图形通过切割、平移等变换,转化为较容易求面积的图形.,如图,函数 yx 与函数 的图象相交于 A,B 两点,过点 A,B 分别作 y 轴的垂线,垂足分别为C,D,则四边形ACBD的面积为 ( ) A. 2 B. 4 C. 6 D. 8,D,C,A,B,D,练一练,4,4,在同一坐标系中,函数 和 y= k2 x+b 的图象大致如下,则 k1 、k2、b各应满足什么条件?,k2 >0b >0,k1 >0,k2 >0b <0,k1 >0,合作探究,k2 <0b <0,k1 <0,k2 0,k1 >0,例6 函数 y=kxk 与 的图象大致是 ( ),D.,x,y,O,y,y,x,B.,x,y,O,D,O,O,k0,k0,×,×,×,k0,k0,由一次函数增减性得k0,由一次函数与y轴交点知k0,则k0,x,在同一直角坐标系中,函数 与 y = ax+1 (a0) 的图象可能是 ( ),B,练一练,例7 如图是一次函数 y1=kx+b 和反比例函数 的图象,观察图象,当 y1y2 时,x 的取值范围为 .,23,解析:y1y2 即一次函数图象处于反比例函数图象的上方时. 观察右图,可知23.,方法总结:对于一些题目,借助函数图象比较大小更加简洁明了.,练一练,如图,一次函数 y1= k1x + b (k10) 的图象与反比例函数 的图象交于 A,B 两点,观察图象,当y1y2时,x 的取值范围是 ,A,B,12,例8 已知一个正比例函数与一个反比例函数的图象交于点 P (3,4).试求出它们的解析式,并画出图象.,由于这两个函数的图象交于点 P (3,4),则点 P (3,4) 是这两个函数图象上的点, 即点 P 的坐标分别满足这两个解析式.,解:设正比例函数、反比例函数的解析式分别为 y=k1x 和 .,所以 , .,解得 , .,P,则这两个函数的解析式分别为 和 , 它们的图象如图所示.,这两个图象有何共同特点?你能求出另外一个交点的坐标吗?说说你发现了什么?,想一想:,反比例函数 的图象与正比例函数 y = 3x 的图象的交点坐标为 ,(2,6),(2,6),解析:联立两个函数解析式,解方程即可.,练一练,当堂练习,A. 4 B. 2 C. 2 D.不确定,1. 如图, P 是反比例函数 的图象上一点, 过点 P 作 PB x 轴于点 B,点 A 在 y 轴上, ABP 的面积为 2,则 k 的值为 ( ),O,B,A,P,x,y,A,2. 反比例函数 的图象与一次函数 y = 2x +1 的 图象的一个交点是 (1,k),则反比例函数的解析 式是_,3. 如图,直线 y=k1x + b 与反比例函数 (x0)交于A,B两点,其横坐标分别为1和5,则不等式k1x +b 的解集是_,1x5,4. 已知反比例函数 的图象经过点 A (2,4). (1) 求 k 的值;,解: 反比例函数 的图象经过点 A(2,4), 把点 A 的坐标代入表达式,得 ,,解得 k = 8.,(2) 这个函数的图象分布在哪些象限?y 随 x 的增大 如何变化?,解:这个函数的图象位于第二、四象限,在每一个 象限内,y 随 x 的增大而增大.,(3) 画出该函数的图象;,解:如图所示:,(4) 点 B (1,8) ,C (3,5)是否在该函数的图象上?,因为点 B 的坐标满足该解析式,而点 C 的坐标不满足该解析式,所以点 B 在该函数的图象上,点 C 不在该函数的图象上.,解:该反比例函数的解析式为 .,5. 如图,直线 y=ax + b 与双曲线 交于两点 A(1,2),B(m,4)两点, (1) 求直线与双曲线的解析式;,所以一次函数的解析式为 y = 4x2.,把A,B两点坐标代入一次函数解析式中,得到a =4,b =2.,解:把 B(1,2)代入双曲线解析式中, 得 k = 2,故其解析式为 . 当y =4时,m= .,(2) 求不等式 ax + b 的解集.,6. 如图,反比例函数 与一次函数 y =x + 2 的图象交于 A,B 两点. (1) 求 A,B 两点的坐标;,解:,解得,所以A(2,4),B(4,2).,或,作ACx轴于C,BDx轴于D,则AC=4,BD=2.,(2) 求AOB的面积.,解:一次函数与x轴的交点为M (2,0), OM=2.,M,C,D,SOMB=OM·BD÷2=2×2÷2=2,,SOMA=OM·AC÷2=2×4÷2=4,,SAOB=SOMB+SOMA=2+4=6.,课堂小结,面积问题,面积不变性,与一次函数的综合,判断反比例函数和一次函数在同一直角坐标系中的图象,要对系数进行分类讨论,并注意b 的正负,反比例函数的图象是一个以原点为对称中心的中心对称图形,其与正比例函数的交点关于原点中心对称,反比例函数图象和性质的综合运用,26.2 实际问题与反比例函数,第二十六章 反比例函数,导入新课,讲授新课,当堂练习,课堂小结,第1课时 实际问题中的反比例函数,新课标人教版九年级数学下册,学习目标,1. 体会数学与现实生活的紧密联系,增强应用意识, 提高运用代数方法解决问题的能力.2. 能够通过分析实际问题中变量之间的关系,建立反 比例函数模型解决问题,进一步提高运用函数的图 象、性质的综合能力. (重点、难点)3. 能够根据实际问题确定自变量的取值范围,导入新课,情境引入,请欣赏成都拉面小哥的“魔性”舞姿,拉面小哥舞姿妖娆,手艺更是精湛. 如果他要把体积为 15 cm3 的面团做成拉面,你能写出面条的总长度 y (单位:cm) 与面条粗细 (横截面积) S (单位:cm2)的函数关系式吗?,你还能举出我们在日常生活、生产或学习中具有反比例函数关系的量的实例吗?,例1 市煤气公司要在地下修建一个容积为104 m3的圆柱形煤气储存室.(1) 储存室的底面积 S (单位:m2) 与其深度 d (单位:m) 有怎样的函数关系?,讲授新课,解:根据圆柱体的体积公式,得 Sd =104,, S 关于d 的函数解析式为,典例精析,(2) 公司决定把储存室的底面积 S 定为 500 m2,施工队 施工时应该向下掘进多深?,解得 d = 20.如果把储存室的底面积定为 500 m²,施工时应向地下掘进 20 m 深.,解:把 S = 500 代入 ,得,(3) 当施工队按 (2) 中的计划掘进到地下 15 m 时,公 司临时改变计划,把储存室的深度改为 15 m. 相 应地,储存室的底面积应改为多少 (结果保留小 数点后两位)?,解得 S666.67.,当储存室的深度为15 m 时,底面积应改为 666.67 m².,解:根据题意,把 d =15 代入 ,得,第 (2) 问和第 (3) 问与过去所学的解分式方程和求代数式的值的问题有何联系?,第 (2) 问实际上是已知函数 S 的值,求自变量 d 的取值,第 (3) 问则是与第 (2) 问相反,想一想:,1. 矩形面积为 6,它的长 y 与宽 x 之间的函数关系用 图象可表示为 ( ),B,练一练,A.,x,y,x,y,x,y,x,y,2. 如图,某玻璃器皿制造公司要制造一种容积为1升 (1升1立方分米)的圆锥形漏斗 (1) 漏斗口的面积 S (单位:dm2)与漏斗的深 d (单位: dm) 有怎样的函数关系?,