高二数学必背公式归纳精选.docx
高二数学必背公式归纳高二数学公式1 中学数学常用公式标准方程 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c_h斜棱柱侧面积 S=c'_h 正棱锥侧面积S=1/2c_h'正棱台侧面积 S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2 圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l 弧长公式l=a_ra是圆心角的弧度数r>0扇形面积公式s=1/2_l_r 锥体体积公式 V=1/3_S_H 圆锥体体积公式V=1/3_pi_r2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=s_h圆柱体V=pi_r2h 高二数学公式2 等差数列 1、等差数列的通项公式为: an=a1+(n-1)d(1) 2、前n项和公式为: Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2) 从(1)式可以看出,an是n的一次数函(d0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d0)或一次函数(d=0,a10),且常数项为0. 在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且随意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式. 3、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=ak+an-k+1,k1,2,n 若m,n,p,qN_,且m+n=p+q,则有 am+an=ap+aq Sm-1=(2n-1)an,S2n+1=(2n+1)an+1 Sk,S2k-Sk,S3k-S2k,Snk-S(n-1)k或等差数列,等等. 和=(首项+末项)_项数÷2 项数=(末项-首项)÷公差+1 首项=2和÷项数-末项 末项=2和÷项数-首项 项数=(末项-首项)/公差+1 等比数列 1、等比数列的通项公式是:An=A1_q(n-1) 2、前n项和公式是:Sn=A1(1-qn)/(1-q) 且随意两项am,an的关系为an=am·q(n-m) 3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=ak·an-k+1,k1,2,n 4、若m,n,p,qN_,则有:ap·aq=am·an, 等比中项:aq·ap=2arar则为ap,aq等比中项. 记n=a1·a2an,则有2n-1=(an)2n-1,2n+1=(an+1)2n+1 另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的. 性质:若m、n、p、qN,且m+n=p+q,则am·an=ap_aq; 在等比数列中,依次每k项之和仍成等比数列. “G是a、b的等比中项”“G2=ab(G0)”. 在等比数列中,首项A1与公比q都不为零. 高二数学函数学问点 函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:留意定义是相对与某个详细的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:留意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。 判别方法:定义法,图像法,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的随意x满意:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的随意x满意:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 图形变换:函数图像变换:(重点)要求驾驭常见基本函数的图像,驾驭函数图像变换的一般规律。 常见图像改变规律:(留意平移改变能够用向量的语言说明,和按向量平移联系起来思索) 平移变换y=f(x)y=f(x+a),y=f(x)+b 留意:()有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。 ()会结合向量的平移,理解根据向量(m,n)平移的意义。 对称变换y=f(x)y=f(-x),关于y轴对称 y=f(x)y=-f(x),关于x轴对称 y=f(x)y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(留意:它是一个偶函数) 伸缩变换:y=f(x)y=f(x), y=f(x)y=Af(x+)详细参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 反函数: (1)定义: (2)函数存在反函数的条件: (3)互为反函数的定义域与值域的关系: (4)求反函数的步骤:将看成关于的方程,解出,若有两解,要留意解的选择;将互换,得;写出反函数的定义域(即的值域)。 (5)互为反函数的图象间的关系: (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它肯定不存在反函数。 高二数学必背公式归纳