高二数学知识点总结归纳最全5篇分享精编.docx
高二数学知识点总结归纳最全5篇分享高二数学学问点总结1 一、随机事务 主要驾驭好(三四五) (1)事务的三种运算:并(和)、交(积)、差;留意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、安排律、德莫根律。 (3)事务的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数旁边,这个数称为事务的概率;(2)古典定义:要求样本空间只有有限个基本领件,每个基本领件出现的可能性相等,则事务A所含基本领件个数与样本空间所含基本领件个数的比称为事务的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事务A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满意三条公理的任何从样本空间的子集集合到0,1的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特殊地,假如A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特殊地,假如B包含于A,则P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特殊地,假如A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/P(Ai)P(B|Ai).它是由果索因; 假如一个事务B可以在多种情形(缘由)A1,A2,.,An下发生,则用全概率公式求B发生的概率;假如事务B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)pk(1-p)(n-k),k=0,1,2,.,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式. 高二数学学问点总结2 1、圆的定义 平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (x-a)2+(y-b)2=r2 (1)标准方程,圆心(a,b),半径为r; (2)求圆方程的方法: 一般都采纳待定系数法:先设后求。确定一个圆须要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,须要求出D,E,F; 另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系 直线与圆的位置关系有相离,相切,相交三种状况: (1)设直线,圆,圆心到l的距离为,则有; (2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 练习题: 2.若圆(x-a)2+(y-b)2=r2过原点,则() A.a2-b2=0B.a2+b2=r2 C.a2+b2+r2=0D.a=0,b=0 选B.因为圆过原点,所以(0,0)满意方程, 即(0-a)2+(0-b)2=r2, 所以a2+b2=r2. 高二数学学问点总结3 分层抽样 先将总体中的全部单位根据某种特征或标记(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采纳简洁随机抽样或系用抽样的方法抽取一个子样本,最终,将这些子样本合起来构成总体的样本。 两种方法 1.先以分层变量将总体划分为若干层,再根据各层在总体中的比例从各层中抽取。 2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的依次整齐排列,最终用系统抽样的方法抽取样本。 2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,全部的样本进而代表总体。 分层标准 (1)以调查所要分析和探讨的主要变量或相关的变量作为分层的标准。 (2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。 (3)以那些有明显分层区分的变量作为分层变量。 分层的比例问题 (1)按比例分层抽样:依据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。 (2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会特别少,此时采纳该方法,主要是便于对不同层次的子总体进行特地探讨或进行相互比较。假如要用样本资料推断总体时,则须要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据复原到总体中各层实际的比例结构。 高二数学学问点总结4 总体和样本 在统计学中,把探讨对象的全体叫做总体。 把每个探讨对象叫做个体。 把总体中个体的总数叫做总体容量。 为了探讨总体的有关性质,一般从总体中随机抽取一部分:x1,x2,.,探讨,我们称它为样本.其中个体的个数称为样本容量。 简洁随机抽样 也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无肯定的关联性和排斥性。简洁随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。 简洁随机抽样常用的方法 抽签法 随机数表法 计算机模拟法 运用统计软件干脆抽取。 在简洁随机抽样的样本容量设计中,主要考虑: 总体变异状况; 允许误差范围; 概率保证程度。 抽签法 给调查对象群体中的每一个对象编号; 打算抽签的工具,实施抽签; 对样本中的每一个个体进行测量或调查。 高二数学学问点总结5 1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法. 2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,接着上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数. 3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,接着这个操作,直到所得的数相等为止,则这个数就是所求的公约数. 4.秦九韶算法是一种用于计算一元二次多项式的值的方法. 5.常用的排序方法是干脆插入排序和冒泡排序. 6.进位制是人们为了计数和运算便利而约定的记数系统.“满进一”,就是k进制,进制的基数是k. 7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再根据十进制数的运算规则计算出结果. 8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数. 高二数学学问点总结归纳最全5篇共享