欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    【数学】313《导数的几何意义》课件(人教A版选修1-1).ppt

    • 资源ID:21913371       资源大小:463.50KB        全文页数:21页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    【数学】313《导数的几何意义》课件(人教A版选修1-1).ppt

    复习复习1.平均变化率的定义平均变化率的定义: 式子式子 称为函数称为函数 f (x)从x1到到 x2的平均变化率的平均变化率.1212)()(xxxfxf令令x = x2 x1 , f = f (x2) f (x1) ,则则xfxxxfxf )()(1212复习复习:导数的概念导数的概念 定义定义:设函数:设函数y=f(x)在点在点x0处及其附近有定义处及其附近有定义,当当自变量自变量x在点在点x0处有改变量处有改变量x时函数有相应的改变量时函数有相应的改变量y=f(x0+ x)- f(x0).如果当如果当x0 时时,y/x的极限的极限存在存在,这个极限就叫做函数这个极限就叫做函数f(x)在点在点x0处的导数处的导数(或变化或变化率率)记作记作 即即:,|)(00 xxyxf 或或00000()()()limlim.xxf xxf xyfxxx 由导数的定义可知由导数的定义可知, 求函数求函数 y = f (x)的导数的一般方法的导数的一般方法:1. 求函数的改变量求函数的改变量2. 求平均变化率求平均变化率3. 求值求值);()(00 xfxxff.lim)(00 xfxfx;)()(00 xxfxxfxf一差、二化、三极限一差、二化、三极限3.1.3导数的几何意义导数的几何意义2,如果一个函数的瞬时变化率处处为,如果一个函数的瞬时变化率处处为0,则这个函,则这个函数的图象是(数的图象是( )A.圆圆 B.抛物线抛物线 C.椭圆椭圆 D.直线直线)2( ),1( ),( ,)(12ffxfxxf求:设例的值代入求得导数值。再将自变量义求思路:先根据导数的定),( xfxxxxxxxxxxxfxxfxfxxx2)2(lim)(lim)()(lim)( 02200解:由导数的定义有422)( )2( 2) 1(2)( ) 1( 21xxxffxff处的导数。在:求函数例12xxyxxxyxy1111解法一:21111lim0 xx211xy111x处的导数。在:求函数例12xxyxxxxxxxxyxxxy1解法二:xxxxxyxx211limlim00211xyxy2100()( )( )limlimxxyf xxf xf xyxx 在不致发生混淆时,在不致发生混淆时,导函数导函数也简称也简称导数导数000( )()( )()( ).yfxxfxfxfxx 函 数在 点处 的 导 数等 于 函 数的 导 函 数在 点处 的 函 数 值 什么是导函数?由函数由函数f(x)在在x=x0处求导数的过程可以看到处求导数的过程可以看到,当当时时,f(x0) 是一个确定的数是一个确定的数.那么那么,当当x变化时变化时,便是便是x的一个函数的一个函数,我们叫它为我们叫它为f(x)的导函数的导函数.即即: 瞬时速度就是位移函数瞬时速度就是位移函数s(t)对时间对时间t的导数的导数. 是函数是函数f(x)在以在以x0与与x0+x 为端点的区间为端点的区间x0,x0+x(或或x0+x,x0)上的上的平均变化平均变化率率,而导数则是函数而导数则是函数f(x)在点在点x0 处的处的变化率变化率,它反映了函它反映了函数随自变量变化而变化的数随自变量变化而变化的快慢快慢程度程度 xxfxxfxy )()(00 如果函数如果函数y=f(x)在点在点x=x0存在导数存在导数,就说函数就说函数y=f(x)在点在点x0处处可导可导,如果极限不存在如果极限不存在,就说函数就说函数 f(x)在点在点x0处处不可导不可导.0000( )()()limxxf xf xfxxx思考一下,导数可以用下式表示吗?下面来看导数的几何意义: y=f(x)PQMxyOxyPy=f(x)QMxyOxy 如图如图,曲线曲线C是函数是函数y=f(x)的图象的图象,P(x0,y0)是曲线是曲线C上的上的任意一点任意一点,Q(x0+x,y0+y)为为P邻近一点邻近一点,PQ为为C的割线的割线,PM/x轴轴,QM/y轴轴,为为PQ的的倾斜角倾斜角.tan,: xyyMQxMP则则yx请问:是割线PQ的什么?斜率!PQoxyy=f(x)割割线线切线切线T请看当点请看当点Q沿着曲线逐渐向点沿着曲线逐渐向点P接近时接近时,割线割线PQ绕着绕着点点P逐渐转动的情况逐渐转动的情况. 我们发现我们发现,当点当点Q沿着曲线无限接近点沿着曲线无限接近点P即即x0时时,割线割线PQ有一个极限位置有一个极限位置PT.则我们把直线则我们把直线PT称为曲线在点称为曲线在点P处的处的切切线线. 设切线的倾斜角为设切线的倾斜角为,那么当那么当x0时时,割线割线PQ的斜率的斜率,称称为曲线在点为曲线在点P处的处的切线的斜率切线的斜率.即即:00000()( )( )limlimxxf xxf xykf xxx 切线 这个概念这个概念:提供了求曲线上某点切线的斜率的一种方法提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质切线斜率的本质函数在函数在x=x0处的导数处的导数.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。叫做切点。割线趋近于确定的位置的直线定义为割线趋近于确定的位置的直线定义为切线切线.曲线与直线相切,并不一定只有一个公共点。曲线与直线相切,并不一定只有一个公共点。例例1:求曲线求曲线y=f(x)=x2+1在点在点P(1,2)处的切线方程处的切线方程.QPy=x2+1xy-111OjMyx. 2)(2lim) 11 (1)1 (lim)()(lim:2020000 xxxxxxxfxxfkxxx解解因此因此,切线方程为切线方程为y-2=2(x-1),即即y=2x.求曲线在某点处的切线方程求曲线在某点处的切线方程的基本步骤的基本步骤:先利用切线斜率先利用切线斜率的定义求出切线的斜率的定义求出切线的斜率,然后然后利用点斜式求切线方程利用点斜式求切线方程.练习练习:如图已知曲线如图已知曲线 ,求求:(1)点点P处的切线的斜率处的切线的斜率; (2)点点P处的切线方程处的切线方程.)38, 2(313Pxy上上一一点点 yx-2-112-2-11234OP313yx.)(33lim31)()(33lim3131)(31limlim,31)1(2220322033003xxxxxxxxxxxxxxxxyyxyxxxx 解解:. 42|22 xy即即点点P处的切线的斜率等于处的切线的斜率等于4. (2)在点在点P处的切线方程是处的切线方程是y-8/3=4(x-2),即即12x-3y-16=0.(1)求出函数在点)求出函数在点x0处的变化率处的变化率 ,得到曲线,得到曲线 在点在点(x0,f(x0)的切线的斜率。的切线的斜率。)(0 xf (2)根据直线方程的点斜式写出切线方程,即)根据直线方程的点斜式写出切线方程,即).)()(000 xxxfxfy d.求切线方程的步骤:求切线方程的步骤:小结: 无限逼近的极限思想是建立导数无限逼近的极限思想是建立导数概念、用导数定义求概念、用导数定义求 函数的导数的函数的导数的基本思想,丢掉极限思想就无法理解基本思想,丢掉极限思想就无法理解导导 数概念。数概念。作业:处的导数。处的导数。在在求函数求函数11. 1 xxy2.

    注意事项

    本文(【数学】313《导数的几何意义》课件(人教A版选修1-1).ppt)为本站会员(仙***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开