欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    水力学实验报告思:误差分析,成果总结)河海大学出品.pdf

    • 资源ID:22745880       资源大小:1.76MB        全文页数:27页
    • 资源格式: PDF        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    水力学实验报告思:误差分析,成果总结)河海大学出品.pdf

    水力学实验报告水力学实验报告实验一实验一 流体静力学实验流体静力学实验实验原理实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中: z 被测点在基准面的相对位置高度;p 被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;液体容重;h 被测点的液体深度。另对装有水油(图 1.2 及图 1.3)U 型测管,应用等压面可得油的比重 S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得 S0。实验分析与讨论实验分析与讨论1.1.同一静止液体内的测管水头线是根什么线?同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。2.2.当当 P PB B00。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点 5 至测点7,管收缩,部分势能转换成动能,测压管水头线降低, Jp0。测点7 至测点 9,管渐扩,部分动能又转换成势能, 测压管水头线升高, JP0,故 E2恒小于 E1, (E-E)线不可能回升。(E-E) 线下降的坡度越大,即J 越大,表明单位流程上的水头损失越大,如图 2.3 的渐扩段和阀门等处,表明有较大的局部水头损失存在。2.2.流量增加,测压管水头线有何变化?为什么?流量增加,测压管水头线有何变化?为什么?有 如 下 二 个 变 化 :( 1 ) 流 量 增 加 , 测 压 管 水 头 线 ( P-P ) 总 降 落 趋 势 更 显 著 。 这 是 因 为 测 压 管 水 头,任一断面起始时的总水头 E 及管道过流断面面积 A 为定值时,Q 增大,就增大,则必减小。而且随流量的增加阻力损失亦增大, 管道任一过水断面上的总水头 E 相应减小,故的减小更加显著。(2)测压管水头线(P-P)的起落变化更为显著。因为对于两个不同直径的相应过水断面有式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q 增大,H 亦增大, (P-P)线的起落变化就更为显著。3.3.测点测点 2 2、3 3 和测点和测点 1010、1111 的测压管读数分别说明了什么问题?的测压管读数分别说明了什么问题?测点2、 3位于均匀流断面 (图2.2) , 测点高差0.7cm, HP=均为37.1cm (偶有毛细影响相差0.1mm) ,表明均匀流同断面上,其动水压强按静水压强规律分布。测点 10、11 在弯管的急变流断面上,测压管水头差为 7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力” ,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点 10、11 应舍弃。4.4.试问避免喉管试问避免喉管 (测点(测点 7 7) 处形成真空有哪几种技术措施?分析改变作用水头处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)(如抬高或降低水箱的水位)对喉管压强的影响情况。对喉管压强的影响情况。下述几点措施有利于避免喉管(测点 7)处真空的形成:(1)减小流量, (2)增大喉管管径, (3)降低相应管线的安装高程, (4)改变水箱中的液位高度。显然(1) 、 (2) 、 (3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降低管线位置往往就可完全避免真空。例如可在水箱出口接一下垂 90 弯管,后接水平段,将喉管的高程降至基准高程 00,比位能降至零,比压能 p/得以增大(Z) ,从而可能避免点 7 处的真空。至于措施(4)其增压效果是有条件的,现分析如下:当作用水头增大 h 时,测点 7 断面上值可用能量方程求得。取基准面及计算断面 1、2、3,计算点选在管轴线上(以下水柱单位均为cm) 。于是由断面1、2 的能量方程(取 a2=a3=1)有(1)因 hw1-2可表示成此处 c1.2 是管段 1-2 总水头损失系数,式中 e、s 分别为进口和渐缩局部损失系数。又由连续性方程有故式(1)可变为(2)式中可由断面 1、3 能量方程求得,即(3)由此得(4)代入式( 2)有(Z2+P2/)随 h 递增还是递减,可由(Z2+P2/)加以判别。因(5)若 1-(d3/d2)4+c1.2/(1+c1.3)0,则断面 2 上的(Z+p/) 随 h 同步递增。反之,则递减。文丘里实验为递减情况,可供空化管设计参考。在 实 验 报 告 解 答 中 , d3/d2=1.37/1 , Z1=50 , Z3=-10 , 而 当 h=0 时 , 实 验 的 (Z2+P2/ )=6 ,将各值代入式(2)、(3),可得该管道阻力系数分别为 c1.2=1.5,c1.3=5.37。再将其代入式(5)得表明本实验管道喉管的测压管水头随水箱水位同步升高。但因 (Z2+P2/)接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不显著。变水头实验可证明该结论正确。5.5.由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。与毕托管相连通的测压管有 1、6、8、12、14、16 和 18 管,称总压管。总压管液面的连续即为毕托管测量显示的总水头线,其中包含点流速水头。而实际测绘的总水头是以实测的值加断面平均流速水头 v2/2g 绘制的。据经验资料,对于园管紊流,只有在离管壁约 0.12d 的位置,其点流速方能代表该断面的平均流速。由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。因此,本实验由 1、6、8、12、14、16 和 18 管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘总水头线才更准确。实验三实验三 不可压缩流体恒定流动量定律实验不可压缩流体恒定流动量定律实验实验原理实验原理恒定总流动量方程为取脱离体,因滑动摩擦阻力水平分离即,可忽略不计,故 x 方向的动量方程化为式中:hc作用在活塞形心处的水深;D活塞的直径;Q射流流量;V1x射流的速度;1动量修正系数。实验中,在平衡状态下,只要测得Q 流量和活塞形心水深 hc,由给定的管嘴直径 d 和活塞直径 D,代入上式,便可验证动量方程,并率定射流的动量修正系数1值。其中,测压管的标尺零点已固定在活塞的园心处,因此液面标尺读数,即为作用在活塞园心处的水深。实验分析与讨论实验分析与讨论1 1、实测与公认值、实测与公认值( (=1.02=1.021.05)1.05)符合与否?如不符合,试分析原因。符合与否?如不符合,试分析原因。实测=1.035 与公认值符合良好。(如不符合,其最大可能原因之一是翼轮不转所致。为排除此故障,可用 4B 铅笔芯涂抹活塞及活塞套表面。)2 2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿 x x 方向的动量力有无影响?方向的动量力有无影响?为什么?为什么?无影响。因带翼片的平板垂直于 x 轴,作用在轴心上的力矩 T,是由射流冲击平板是,沿 yz 平面通过翼片造成动量矩的差所致。即式中Q射流的流量;Vyz1入流速度在 yz 平面上的分速;Vyz2出流速度在 yz 平面上的分速;1入流速度与圆周切线方向的夹角,接近 90;2出流速度与圆周切线方向的夹角;r1,2分别为内、外圆半径。该式表明力矩 T 恒与 x 方向垂直,动量矩仅与 yz 平面上的流速分量有关。也就是说平板上附加翼片后,尽管在射流作用下可获得力矩,但并不会产生x 方向的附加力,也不会影响x 方向的流速分量。所以x 方向的动量方程与平板上设不设翼片无关。3 3、通过细导水管的分流,其出流角度与、通过细导水管的分流,其出流角度与 V V2 2相同,试问对以上受力分析有无影响?相同,试问对以上受力分析有无影响?无影响。当计及该分流影响时,动量方程为即该式表明只要出流角度与 V1垂直,则 x 方向的动量方程与设置导水管与否无关。4 4、滑动摩擦力、滑动摩擦力为什么可以忽略不记?试用实验来分析验证为什么可以忽略不记?试用实验来分析验证的大小,记录观察结果。的大小,记录观察结果。( (提示:平衡时,提示:平衡时,向测压管内加入或取出向测压管内加入或取出 1mm1mm 左右深的水,观察活塞及液位的变化左右深的水,观察活塞及液位的变化) )因滑动摩擦力 hc。实际上,hc随 V2及的变化又受总能头的约束,这是因为由能量方程得(2)而所以从式(2)知,能量转换的损失较小时,实验四实验四 毕托管测速实验毕托管测速实验实验原理实验原理(4.1)式中:u毕托管测点处的点流速;c毕托管的校正系数;毕托管全压水头与静水压头差。(4.2)(4.3)联解上两式可得式中:u 测点处流速,由毕托管测定; 测点流速系数;H管嘴的作用水头。实验分析与讨论实验分析与讨论1.1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?利用测压管测量点压强时,为什么要排气?怎样检验排净与否?毕托管、测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响量测精度。检验的方法是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。2.2.毕托管的动压头毕托管的动压头 h h 和管嘴上、下游水位差和管嘴上、下游水位差 H H 之间的大关系怎样?为什么?之间的大关系怎样?为什么?由于且即一般毕托管校正系数 c=11(与仪器制作精度有关) 。喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961。所以h10,则6.6.为什么在光、声、电技术高度发展的今天,仍然常用毕托管这一传统的流体测速仪器?为什么在光、声、电技术高度发展的今天,仍然常用毕托管这一传统的流体测速仪器?毕托管测速原理是能量守恒定律,容易理解。而毕托管经长期应用,不断改进,已十分完善 。具有结构简单,使用方便,测量精度高,稳定性好等优点。因而被广泛应用于液、气流的测量(其测量气体的流速可达 60m/s) 。光、声、电的测速技术及其相关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法达到的。但往往因其机构复杂,使用约束条件多及价格昂贵等因素,从而在应用上受到限制。尤其是传感器与电器在信号接收与放大处理过程中,有否失真,或者随使用时间的长短,环境温度的改变是否飘移等,难以直观判断。致使可靠度难以把握,因而所有光、声、电测速仪器,包括激光测速仪都不得不用专门装置定期率定(有时是利用毕托管作率定) 。可以认为至今毕托管测速仍然是最可信,最经济可靠而简便的测速方法。实验五实验五 雷诺实验雷诺实验实验原理实验原理实验分析与讨论实验分析与讨论流态判据为何采用无量纲参数,而不采用临界流速?流态判据为何采用无量纲参数,而不采用临界流速?雷诺在 1883 年以前的实验中,发现园管流动存在两种流态层流和紊流,并且存在着层流转化为紊流的临界流速 V,V与流体的粘性及园管的直径 d 有关,即(1)因此从广义上看,V不能作为流态转变的判据。为了判别流态,雷诺对不同管径、不同粘性液体作了大量的实验,得出了用无量纲参数( vd/)作为管流流态的判据。他不但深刻揭示了流态转变的规律,而且还为后人用无量纲化的方法进行实验研究树立了典范。用无量纲分析的雷列法可得出与雷诺数结果相同的无量纲数。可以认为式(1)的函数关系能用指数的乘积来表示。即(2)其中 K 为某一无量纲系数。式(2)的量纲关系为(3)从量纲和谐原理,得L:21+2=1T:-1=-1联立求解得1=1,2=-1将上述结果,代入式(2) ,得或雷诺实验完成了 K 值的测定,以及是否为常数的验证。结果得到 K=2320。于是,无量纲数 vd/便成了适应于任何管径,任何牛顿流体的流态转变的判据。由于雷诺的奉献,vd/定命为雷诺数。随着量纲分析理论的完善,利用量纲分析得出无量纲参数,研究多个物理量间的关系,成了现今实验研究的重要手段之一。为何认为上临界雷诺数无实际意义,为何认为上临界雷诺数无实际意义, 而采用下临界雷诺数作为层流与紊流的判据?实测下临界雷诺数为而采用下临界雷诺数作为层流与紊流的判据?实测下临界雷诺数为多少?多少?根据实验测定,上临界雷诺数实测值在 30005000 范围内,与操作快慢,水箱的紊动度,外界干扰等密切相关。有关学者做了大量实验,有的得 12000,有的得 20000,有的甚至得 40000。实际水流中,干扰总是存在的, 故上临界雷诺数为不定值, 无实际意义。 只有下临界雷诺数才可以作为判别流态的标准。凡水流的雷诺数小于下临界雷诺数者必为层流。一般实测下临界雷诺数为 2100 左右。雷诺实验得出的圆管流动下临界雷诺数雷诺实验得出的圆管流动下临界雷诺数 23202320,而目前一般教科书中介绍采用的下临界雷诺数是,而目前一般教科书中介绍采用的下临界雷诺数是 20002000,原因何在?原因何在?下临界雷诺数也并非与干扰绝对无关。雷诺实验是在环境的干扰极小,实验前水箱中的水体经长时间的稳定情况下,经反复多次细心量测才得出的。而后人的大量实验很难重复得出雷诺实验的准确数值,通常在 20002300 之间。因此,从工程实用出发,教科书中介绍的园管下临界雷诺数一般是 2000。试结合紊动机理实验的观察,分析由层流过渡到紊流的机理何在?试结合紊动机理实验的观察,分析由层流过渡到紊流的机理何在?从紊动机理实验的观察可知,异重流(分层流)在剪切流动情况下,分界面由于扰动引发细微波动,并随剪切流速的增大,分界面上的波动增大,波峰变尖,以至于间断面破裂而形成一个个小旋涡。使流体质点产生横向紊动。正如在大风时,海面上波浪滔天,水气混掺的情况一样,这是高速的空气和静止的海水这两种流体的界面上,因剪切流动而引起的界面失稳的波动现象。由于园管层流的流速按抛物线分布,过流断面上的流速梯度较大,而且因壁面上的流速恒为零。相同管径下,如果平均流速越大则梯度越大,即层间的剪切流速越大,于是就容易产生紊动。紊动机理实验所见的波动破裂旋涡质点紊动等一系列现象,便是流态从层流转变为紊流的过程显示。分析层流和紊流在运动学特性和动力学特性方面各有何差异?分析层流和紊流在运动学特性和动力学特性方面各有何差异?层流和紊流在运动学特性和动力学特性方面的差异如下表:运动学特性:动力学特性:层流:1.质点有律地作分层流动1.流层间无质量传输2.断面流速按抛物线分布2.流层间无动量交换3.运动要素无脉动现象3.单位质量的能量损失与流速的一次方成正比紊流:1.质点互相混掺作无规则运动1.流层间有质量传输2.断面流速按指数规律分布2.流层间存在动量交换3.运动要素发生不规则的脉动现象3.单位质量的能量损失与流速的(1.752)次方成正比实验六实验六 文丘里流量计实验文丘里流量计实验实验原理实验原理根据能量方程式和连续性方程式,可得不计阻力作用时的文氏管过水能力关系式式中:h 为两断面测压管水头差。由于阻力的存在,实际通过的流量 Q 恒小于 Q。今引入一无量纲系数 =Q/Q(称为流量系数) ,对计算所得的流量值进行修正。即另,由水静力学基本方程可得气水多管压差计的h 为实验分析与讨论实验分析与讨论本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对 d d2 2=0.7cm=0.7cm 的管道而言,若的管道而言,若因加工精度影响,误将(因加工精度影响,误将(d d2 20.010.01)cmcm 值取代上述值取代上述 d d2 2值时,本实验在最大流量下的值将变为多少?值时,本实验在最大流量下的值将变为多少?由式可见本实验(水为流体)的值大小与 Q、d1、d2、h 有关。其中 d1、d2影响最敏感。本实验中若文氏管 d1 =1.4cm,d2=0.71cm,通常在切削加工中d1比 d2测量方便,容易掌握好精度, d2不易测量准确,从而不可避免的要引起实验误差。例如当最大流量时值为 0.976,若 d2的误差为0.01cm,那么值将变为1.006,显然不合理。为什么计算流量为什么计算流量 Q Q与实际流量与实际流量 Q Q 不相等?不相等?因为计算流量 Q是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力,QQ,即1.0。试证气水多管压差计(图试证气水多管压差计(图 6.46.4)有下列关系:)有下列关系:如图 6. 4 所述,试应用量纲分析法,阐明文丘里流量计的水力特性。试应用量纲分析法,阐明文丘里流量计的水力特性。运用量纲分析法得到文丘里流量计的流量表达式,然后结合实验成果,便可进一步搞清流量计的量测特性。对于平置文丘里管,影响1的因素有:文氏管进口直径 d1,喉径 d2、流体的密度、动力粘滞系数及两个断面间的压强差P。根据定理有从中选取三个基本量,分别为:共有 6 个物理量,有 3 个基本物理量,可得 3 个无量纲数,分别为:根据量纲和谐原理,1的量纲式为分别有L:1=a1+b1-3c1T:0=- b1M:0= c1联解得:a1=1,b1=0,c1=0,则同理将各值代入式(1)得无量纲方程为或写成进而可得流量表达式为(2)式(2)与不计损失时理论推导得到的(3)相似。为计及损失对过流量的影响,实际流量在式(3)中引入流量系数 Q计算,变为(4)比较(2) 、 (4)两式可知,流量系数 Q与 Re一定有关,又因为式(4)中 d2/d1的函数关系并不一定代表了式(2)中函数所应有的关系,故应通过实验搞清 Q与 Re、d2/d1的相关性。通过以上分析, 明确了对文丘里流量计流量系数的研究途径, 只要搞清它与 Re及 d2/d1的关系就行了。由实验所得在紊流过渡区的 QRe关系曲线(d2/d1为常数) ,可知 因恒有Q随 Re的增大而增大,2105,使 Q值接近于常数0.98。流量系数 Q的上述关系,也正反映了文丘里流量计的水力特性。文氏管喉颈处容易产生真空,文氏管喉颈处容易产生真空,允许最大真空度为允许最大真空度为 6 67mH7mH2 2O O。工程中应用文氏管时,工程中应用文氏管时,应检验其最大真空度应检验其最大真空度是否在允许范围内。据你的实验成果,分析本实验流量计喉颈最大真空值为多少?是否在允许范围内。据你的实验成果,分析本实验流量计喉颈最大真空值为多少?本实验若 d1= 1. 4cm,d2= 0. 71cm,以管轴线高程为基准面,以水箱液面和喉道断面分别为 11 和 22 计算断面,立能量方程得则 052.22cmH2O,而由本实验实测为 60.5cmH2O。即实验中最大流量时,文丘里管喉颈处真空度进一步分析可知,若水箱水位高于管轴线4m 左右时,实验中文丘里喉颈处的真空度可达7mH2O(参考能量方程实验解答六4) 。七七 沿沿 程程 水水 头头 损损 失失 实实 验验一:为 什 么 压 差 计 的 水 柱 差 就 是 沿 程 水 头 损 失 ?实 验 管道 安 装 成 向 下 倾 斜 ,是 否 影响 实 验 成 果 ?现 以 倾 斜 等 径 管 道 上 装 设 的 水 银 多 管 压 差 计 为 例(图 7.3)说 明(图 中 A A 为 水 平 线 ):如 图 示 0 0 为 基 准 面 ,以 1 1 和 2 2 为 计 算 断 面 ,计 算点 在 轴 心 处 ,设 定,由 能 量 方 程 可 得表 明 水 银 压 差 计 的 压 差 值 即 为 沿 程 水 头 损 失 , 且 和 倾 角无 关 。二: 据 实 测 m 值 判 别 本 实 验 的 流 区 。()曲 线 的 斜 率 m = 1. 0 1. 8,即与成 正比 ,表 明 流 动 为 层 流 m = 1. 0、紊 流光 滑 区 和 紊 流 过 渡 区(未达 阻 力 平 方 区 )。三: 实 际 工 程 中 钢 管 中 的 流 动 , 大 多 为 光 滑 紊 流 或 紊 流过 渡 区 ,而 水 电 站 泄 洪 洞 的流 动 ,大 多 为 紊 流 阻 力 平 方区 ,其 原 因 何 在 ?钢 管 的 当 量 粗 糙 度 一 般 为 0. 2mm,常 温(300cm/s, 若 实 用 管 径 D = (20 100) cm, 其)下 ,经 济 流 速, 相 应的 = 0. 0002 0. 001,由 莫 迪 图 知 ,流 动 均 处 在 过 渡 区 。若 需 达 到 阻 力 平 方 区 ,那 么 相 应 的,流 速 应达 到 (5 9) m/s。 这 样 高 速 的 有 压管 流 在 实 际 工 程 中 非 常 少见 。而 泄 洪 洞 的 当 量 粗 糙 度 可 达(1 9)mm,洞 径 一 般 为 (2 3)m,过 流 速 往 往 在( )m/s 以 上 ,其般 均 处 于 阻 力 平 方 区 。四: 管 道 的 当 量 粗 糙 度 如 何 测 得 ?大 于,故 一当 量 粗 糙 度 的 测 量 可 用 实 验 的 同 样 方 法 测 定值 ,然 后 用 下 式 求 解 :(1)考 尔 布 鲁 克 公 式及的(1)迪 图 即 是 本 式 的 图 解 。(2)SJ 公 式(3)Barr 公 式(2)(3)(3)式 精 度 最 高 。在 反 求直 接 由度值 。时 , (2)式 开 方 应 取 负 号 。也 可,进 而 得 出 当 量 粗 糙关 系 在 莫 迪 图 上 查 得五: 本 次 实 验 结 果 与 莫 迪 图 吻 合 与 否 ?试 分 析 其 原 因 。通 常 试 验 点 所 绘 得 的曲 线 处 于 光 滑 管 区 ,本 报 告相 应所 列 的 试 验 值 , 也 是 如 此 。 但 是 , 有 的 实 验 结 果点 落 到 了 莫 迪 图 中 光 滑 管 区 的 右 下 方 。 对 此 必 须 认 真 分析 。如 果 由 于 误 差 所 致 ,那 么 据 下 式 分 析d 和 Q 的 影 响 最 大 ,Q 有 2% 误 差 时 ,就 有 4% 的 误 差 ,而 d有 2% 误 差 时 ,可 产 生 10% 的 误 差 。Q 的 误 差 可 经 多 次 测量 消 除 , 而 d 值 是 以 实 验 常 数 提 供 的 , 由 仪 器 制 作 时 测 量给 定 ,一 般 0. 1 时 ,孔 口 出 流 的 侧 收 缩 率 较 d/H 0. 1 时 ,观 测 知 收 缩 断 面 直 径增 大 ,并 接 进 于 孔径 d, 这 叫 作 不 完 全 收 缩 , 实 验 测 知 , u 增 大 , 可 达 0. 7 左 右。三. 试 分 析 完 善 收 缩 的 锐 缘 薄 壁 孔 口 出 流 的 流 量 系 数有 下 列 关 系 :其 中为 韦 伯 数 。根 据 这 一 关 系 ,并 结 合 其 他 因 素 分 析 = 0. 611)的 原 因 。本 实 验 的 流 量 系 数 偏 离 理 论 值(薄 壁 孔 口 在 完 善 收 缩 条 件 下(孔 口 距 相 邻 壁 面 距 离 L 3d),影 响 孔 口 出 流 流 速 v 的 因 素 有 :作 用 水 头 H,孔 径 d,流 体 的 密 度,即, 重 力 加 速 度 g, 粘 滞 系 数 u 及 表 面 张 力 系 数(1)现 利 用定 律 分 析 流 量 Q 与 各 物 理 量 间 的 相 互 关 系 ,然后 推 求 与 流 量 系 数 相 关 的 水 力 要 素 。因 v、H、是 三 个 量 纲 独 立 的 物 理 量 ,只 有 :根 据定 理 得(2)(3)(4)(5)根 据 量 纲 和 谐 原 理 ,(2)式 的 量 纲 应 为

    注意事项

    本文(水力学实验报告思:误差分析,成果总结)河海大学出品.pdf)为本站会员(暗伤)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开