211简单随机抽样课件(人教A版必修三).ppt
第一章第一章2.12.1.1统计统计第二章第二章第一章第一章2.12.1.12.1随机抽样随机抽样第二章第二章2.1.1简单随机抽样简单随机抽样 第一章第一章2.12.1.1互动课堂互动课堂2随堂测评随堂测评3课后精练课后精练4预习导学预习导学1第一章第一章2.12.1.1预预 习习 导导 学学第一章第一章2.12.1.1课标展示1理解并掌握简单随机抽样的定义、特点和适用范围2掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本第一章第一章2.12.1.1温故知新旧知再现1初中我们学习了样本的有关知识,知道了总体、个体、样本、样本容量、平均数、方差、标准差、众数、中位数等概念,下面我们对这些概念进行回顾:(1)总体:我们所要考察对象的_叫做总体,其中每一个考察对象叫做_(2)样本:从总体中抽出的若干个个体组成的_叫做总体的一个样本,样本中个体的_叫做样本容量全体个体集合数量第一章第一章2.12.1.1(3)个体:总体中的每个_叫做个体(4)样本容量:样本中个体的_叫做样本容量(5)平均数:一组数据的和与这组数据的个数的_(6)方差:各个数据与平均数差的平方和,与这组数据的个数的商(7)标准差:方差的算术平方根(8)众数:一组数据出现次数_的数据(9)中位数:一组数据按从小到大排成一列处于_位置的数元素数目商最多中间第一章第一章2.12.1.1新知导学1简单随机抽样(1)定义:一般地,设一个总体含有N个个体,从中_地抽取n个个体作为样本(nN),如果每次抽取时总体内的各个个体被抽到的机会都_,就把这种抽样方法叫做简单随机抽样(2)说明:我们所讨论的简单随机抽样都是_的抽样,即抽取到某个个体后,该个体不再_总体中常用到的简单随机抽样方法有两种:_ (抓阄法)和_逐个不放回相等不放回放回抽签法随机数法第一章第一章2.12.1.1破疑点简单随机抽样具有下列特点:简单随机抽样要求总体中的个体数N是有限的简单随机抽样抽取样本的容量n小于或等于总体中的个体数N.简单随机抽样中的每个个体被抽到的可能性均为.当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本逐个抽取即每次仅抽取一个个体简单随机抽样是不放回的抽样,即抽取的个体不再放回总体第一章第一章2.12.1.12抽签法一般地,抽签法就是把总体中的N个个体_,把号码写在_上,将号签放在一个容器中,搅拌_后,每次从中抽取_号签,连续抽取n次,就得到一个容量为_的样本编号号签均匀一个n第一章第一章2.12.1.1归纳总结抽签法抽取样本的步骤:将总体中的个体编号为1N.将所有编号1N写在形状、大小相同的号签上将号签放在一个不透明的容器中,搅拌均匀从容器中每次抽取一个号签,并记录其编号,连续抽取n次从总体中将与抽取到的签的编号相一致的个体取出操作要点是:编号、写签、搅匀、抽取样本第一章第一章2.12.1.13随机数法随机数法即利用随机数表、随机数骰子或计算机产生的随机数进行抽样这里仅介绍随机数表法用随机数表法抽取样本的步骤:将总体中的个体_在随机数表中_数作为开始规定一个方向作为从选定的数读取数字的_编号任选一个方向第一章第一章2.12.1.1开始读取数字,若不在编号中,则_,若在编号中则_,依次取下去,直到取满为止(相同的号只计一次)根据选中的号码抽取样本操作要点是:编号、选起始数、读数、获取样本破疑点虽然产生随机数的方法很多,但在高中数学中,仅学习用随机数表产生随机数来抽样,即随机数表法跳过取出第一章第一章2.12.1.14抽签法与随机数法的异同点剖析:相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体所含的个体是有限的;(2)都是从总体中逐个地、不放回地抽取不同点:(1)抽签法比随机数法简单;(2)随机数法更适用于总体中的个体数较多的时候,而抽签法适用于总体中的个体数相对较少的情况,所以当总体中的个体数较多时,应当选用随机数法,这样可以节约大量的人力和制作号签的成本第一章第一章2.12.1.1自我检测1在简单随机抽样中,某一个个体被抽中的可能性()A与第几次抽样无关,第一次抽中的可能性要大些B与第几次抽样无关,每次抽中的可能性都相等C与第几次抽样有关,最后一次抽中的可能性要大些D每个个体被抽中的可能性无法确定答案B解析在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关第一章第一章2.12.1.12抽签法中确保样本代表性的关键是()A制签B搅拌均匀C逐一抽取 D抽取不放回答案B第一章第一章2.12.1.13用随机数表法进行抽样,有以下几个步骤:将总体中的个体编号;获取样本号码;选定随机数表开始的数字,这些步骤的先后顺序应该是_(填序号)答案第一章第一章2.12.1.14为了检验某种产品的质量,决定从1001件产品中抽取10件进行检查,用随机数表法抽取样本的过程中,所编的号码的位数最少是_位答案四解析由于所编号码的位数和读数的位数要一致,因此所编号码的位数最少是四位,从0000到1000,或者是从0001到1001等第一章第一章2.12.1.1互互 动动 课课 堂堂第一章第一章2.12.1.1简单随机抽样的概念 典例探究 第一章第一章2.12.1.1C某学校有在编人员160人其中行政人员16人,教师112人,后勤人员32人,教育部门为了了解学校机构改革意见,要从中抽取一个容量为20的样本D某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量第一章第一章2.12.1.1解析根据简单随机抽样的特点进行判断A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较小,用简单随机抽样法比较方便;C中,由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D中,总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法答案B第一章第一章2.12.1.1本题中易错选A,其原因忽视了简单随机抽样适用于总体容量较小的总体第一章第一章2.12.1.1规律总结:1.如果一个总体满足下列两个条件,那么可用简单随机抽样抽取样本:总体中的个体之间无差异:总体个数不多第一章第一章2.12.1.12判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征: 上述四点特征,如果有一点不满足,就不是简单随机抽样第一章第一章2.12.1.1(1)现从80件产品中随机抽出20件进行质量检验,下列说法正确的是()A80件产品是总体 B20件产品是样本C样本容量是80 D样本容量是20(2)下列提取样本的方法是简单随机抽样吗?为什么?从无限多个个体中抽取50个个体作为样本第一章第一章2.12.1.1箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里从50个个体中一次性抽取5个个体作为样本一彩民选号,从装有36个大小、形状都相同的号签的箱子中逐个不放回地抽取6个号签分析1.统计中的总体、个体、样本、样本容量的概念是什么?2若抽取样本的方式是简单随机抽样,它应具备哪些特点?第一章第一章2.12.1.1解析(1)总体是80件产品的质量;样本是抽取的20件产品的质量,总体容量是80;样本容量是20.(2)不是简单随机抽样,因为被抽取的样本的总体的个数是无限的而不是有限的不是简单随机抽样,因为它是有放回抽样不是简单随机抽样,因为它是一次性抽取,而不是逐个抽取是简单随机抽样,因为总体中的个体是有限的,并且是从总体中逐个抽取、不放回、等可能的抽样答案(1)D第一章第一章2.12.1.1抽签法的应用第一章第一章2.12.1.1解析第一步,将30名学生进行编号,号码为:01,02,30.第二步,用相同的纸条做成30个号签,在每个号签上写上这些编号第三步,将得到的号签放入一个不透明的容器中,并充分搅匀第四步,从容器中依次抽取6个号签,并记录上面的编号第五步,所得号码对应的6名学生就是要抽取的对象第一章第一章2.12.1.1规律总结:一般地,当总体容量和样本容量都较小时可用抽签法在用抽签法解决问题的过程中,为了使每一个个体被抽到的可能性相等,要特别注意每一次抽签前要将号签搅匀,这样才能保证抽样的公平性利用抽签法抽取样本时应注意以下问题:编号时,如果已有编号(如学号,标号等),可不必重新编号号签要求大小、形状完全相同号签要搅拌均匀要逐一不放回地抽取 第一章第一章2.12.1.1某大学为了支援西部教育事业,现从报名的18名志愿者中选取6人组成志愿小组,请用抽签法确定志愿小组成员,并写出抽样步骤第一章第一章2.12.1.1解析抽样步骤是:第一步,将18名志愿者编号,号码是01,02,18;第二步,将号码分别写在同样的小纸片上,揉成团,制成号签;第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀;第四步,从袋子中依次抽取6个号签,并记录上面的编号;第五步,与所得号码对应的志愿者就是志愿小组的成员第一章第一章2.12.1.1解析抽样步骤是:第一步,先将40件零件编号,可以编为00,01,02,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数5开始为便于说明,我们将随机数表中的第6行至第10行摘录如下:随机数表法的应用第一章第一章2.12.1.116 22 77 94 3949 54 43 54 8217 37 93 23 7887 35 20 96 4384 26 34 91 6484 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 5457 60 86 32 4409 47 27 96 5449 17 46 09 6290 52 84 77 2708 02 73 43 28第一章第一章2.12.1.1第三步,从选定的数5开始向右读下去,得到一个两位数字号码59,由于5939,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.与这10个号码对应的零件即是抽取的样本个体第一章第一章2.12.1.1规律总结:在随机数表法抽样的过程中要注意:编号要求位数相同第一个数字的选取是随机的读数的方向是任意的,且事先定好 第一章第一章2.12.1.1假设要抽查某种品牌的850颗种子的发芽率,抽取60颗进行实验利用随机数表抽取种子时,先将850颗种子按001,002,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号_第一章第一章2.12.1.1(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54第一章第一章2.12.1.1解析第8行第2列的数3开始向右读第一个小于850的数字是301,第二个数字是637,也符合题意,第三个数字是859,大于850,舍去,第四个数字是169,符合题意,第五个数字是555,符合题意,故答案为:301,637,169,555.答案301,637,169,555第一章第一章2.12.1.1错解选择A、B、C中的一个第一章第一章2.12.1.1错因分析对于选项A、B处对总体、个体、样本的概念把握不准,误将考察的对象当作运动员;对于选项C处把个体和样本混淆致误正解选D.根据统计的相关概念并结合题意可得,此题的总体、个体、样本这三个概念的考察对象都是运动员的身高,而不是运动员,并且一个个体是指一名运动员的身高,选项A,B表达的对象都是运动员,选项C未将个体和样本理解透彻在这个问题中,总体是240名运动员的身高,个体是每个运动员的身高,样本是40名运动员的身高,样本容量是40.因此选D.第一章第一章2.12.1.1防范措施1.明确相关概念对总体、个体、样本、样本容量的概念要熟练把握,要明确总体与样本的包含关系及样本与样本容量的区别,如本例选项C,是对概念把握不准2注意考察对象解决考查总体、个体、样本、样本容量的概念问题时,关键是明确考察对象,根据相关的概念可知总体、个体与样本的考察对象是相同的,如本例中选项A,B表达的对象都是运动员的身高而不是运动员第一章第一章2.12.1.1从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是()A500名学生是总体B每个被抽查的学生是样本C抽取的60名学生的体重是一个样本D抽取的60名学生的体重是样本容量第一章第一章2.12.1.1解析答案CA总体应为500名学生的体重B样本应为每个被抽查的学生的体重C抽取的60名学生的体重成了总体的一个样本D样本容量为60,不能带有单位第一章第一章2.12.1.1随随 堂堂 测测 评评第一章第一章2.12.1.11为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A总体是240 B个体是每一名学生C样本是40名学生 D样本容量是40答案D解析总体、个体、样本中的对象都是身高,故只有D正确第一章第一章2.12.1.12下面的抽样方法是简单随机抽样的是()A从无数个个体中抽取50个个体作为样本B从含有50个个体的总体里一次性抽取5个个体作为样本C某班有40名同学,指定个子最高的5名同学参加篮球比赛D一彩民从装有30个大小、形状都相同的号签的盒子中无放回地抽取7个号签答案D第一章第一章2.12.1.1解析A错,简单随机抽样中,总体中的个体数不能是无限的;B错,简单随机抽样的定义的要求是“逐个抽取”,不能“一次性”抽取;C错,指定5人参赛,每个个体被抽到的机会不均等,不是简单随机抽样;D对,符合简单随机抽样的定义和特征第一章第一章2.12.1.13用随机数法进行抽样有以下几个步骤:将总体中的个体编号获取样本号码选定开始的数字 选定读数的方向抽取样本这些步骤的先后顺序应为()A BC D答案B第一章第一章2.12.1.14某市为了了解本市4 600名高三理科毕业生的数学成绩,要从中抽取200名进行数据分析,那么这次考察的总体为_,样本容量为_答案4 600名高三理科毕业生的数学成绩200第一章第一章2.12.1.15某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件进行检查,对100件产品采用下面的编号方法: 1 , 2 , 3 , , 1 0 0 ; 0 0 1 , 0 0 2 , 0 0 3 , , 1 0 0 ;00,01,02,99.其中最恰当的编号是_错解因为是对100件产品编号,则编号为1,2,3,100,所以最恰当第一章第一章2.12.1.1错因分析用随机数表法抽样时,如果所编号码的位数不相同,那么无法在随机数表中读数,因此,所编号码的位数要相同正解只有编号时数字位数相同,才能达到随机等可能抽样所以不恰当的编号位数相同,都可以采用随机数表法,但中号码是三位数,读数费时,所以最恰当第一章第一章2.12.1.16某校高一年级有36名足球运动员,要从中抽出7人调查学习负担情况试用两种简单随机抽样方法分别取样解析方法一(抽签法)第一步,将36名足球运动员进行编号,分别为1,2,3,36;第二步,将36个号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的盒子里,充分搅拌,依次抽取7个号签,并记录上面的号码;第四步,与这7个号码对应的足球运动员就是要抽取的样本第一章第一章2.12.1.1方法二(随机数表法)第 一 步 , 将 3 6 名 足 球 运 动 员 进 行 编 号 , 分 别 为00,01,02,03,35;第二步,在随机数表中任选一数作为开始数字,任选一方向作为读数方向比如,选第4行第9个数字“2”,方向向右读;第三步,从“2”开始,向右读,每次读取两位,凡不在0035中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到26,27,31,05,03,15,12.第四步,将与这7个号码26,27,31,05,03,15,12相对应的足球运动员选出,就构成了我们所要的样本第一章第一章2.12.1.1【呈重点、现规律】【呈重点、现规律】1 1简简单随机抽样是一种单随机抽样是一种简简单、基本、不放回的抽样单、基本、不放回的抽样方方法,法,常 用 的常 用 的 简简 单 随 机 抽 样单 随 机 抽 样 方方 法 有 抽 签 法 和 随 机 数 法 法 有 抽 签 法 和 随 机 数 法 2 2抽签法的优点是抽签法的优点是简简单易行,缺点是当总单易行,缺点是当总体体的容量大的容量大时时,费费时时费力,并且费力,并且标标号的签不易搅拌均匀,这样会导致抽样不号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点也是公平;随机数法的优点也是简简单易行,缺点是当总单易行,缺点是当总体体容量大容量大时时, ,编号不编号不方方便便. .两种两种方方法只适合总法只适合总体体容量较少的抽样类型容量较少的抽样类型3 3简简单随机抽样每个个单随机抽样每个个体体入样的可能性都相等,均为入样的可能性都相等,均为n n/ /N N,但要将每个个但要将每个个体体入样的可能性与第入样的可能性与第n n次抽取次抽取时时每个个每个个体体入样入样的可能性区分开,避免在解题中出现错误的可能性区分开,避免在解题中出现错误第一章第一章2.12.1.1