2022年无锡小升初数学考试大纲 .pdf
读书之法 ,在循序而渐进 ,熟读而精思无锡小升初数学考试大纲以下内容是无锡近三年内重点名校(小升初)会考的题型:题型分类分数比例说明数论1012% 基础部分的掌握图形1820% 对于图形中的边长,面积,体积,角度(简单)的熟练掌握综合应用题3640% 此类题将是整个小学奥数的综合能力测试,也是拿分重点。数学原理1012% 基本是初中一二年级才能涉及到的数学原理,只有经过奥数培训的学生,才有可能了解的一:数的认识专题一:整数的认识专题二:数的整除专题三:小数的认识专题四:分数和百分数专题五:正数和负数专题六:量的计量二:四则运算专题一:四则运算的定义和法则专题二:运算定律和简便计算专题三:四则混合运算三:方程复习专题一:用字母表示数专题二:简易方程四:比和比例专题一:比的意义和性质专题二:比例的意义和性质专题三:正比例和反比例五:空间和图形专题一:线和角专题二:平面图形专题三:立体图形专题四:图形的位置和变化六:简单统计专题一:统计表和统计图精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思专题二:可能性和不确定性七:综合应用专题一:一般应用题和复杂应用题专题二 :分数和百分数的应用题专题三:列方程解应用题专题四:比和比例应用题无锡小升初奥数题目主要有下面类型一、计算1四则混合运算繁分数 运算顺序 分数、小数混合运算技巧一般而言: 加减运算中,能化成有限小数的统一以小数形式; 乘除运算中,统一以分数形式。 带分数与假分数的互化 繁分数的化简2简便计算凑整思想基准数思想裂项与拆分提取公因数商不变性质改变运算顺序运算定律的综合运用连减的性质连除的性质同级运算移项的性质增减括号的性质变式提取公因数3估算求某式的整数部分:扩缩法4比较大小通分a. 通分母b. 通分子跟“ 中介” 比利用倒数性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思若 ,则 cba. 。形如:,则 。5定义新运算6特殊数列求和运用相关公式:例如: 1+2+3+4 (n-1)+n+(n-1)+4+3+2+1=n 二、数论1奇偶性问题奇 奇=偶奇 奇=奇奇 偶=奇奇 偶=偶偶 偶=偶偶 偶=偶2位值原则形如: =100a+10b+c 3数的整除特征:整除数特征1.末尾是 0、2、4、6、8 2. 各数位上数字的和是3 的倍数3. 末尾是 0 或 5 4. 各数位上数字的和是9 的倍数5.奇数位上数字的和与偶数位上数字的和,两者之差是11 的倍数10 和 25 末两位数是 4(或 25)的倍数8 和 125 末三位数是 8(或 125)的倍数7、11、13 末三位数与前几位数的差是7(或 11 或 13)的倍数4整除性质如果 c|a、c|b,那么 c|(a b) 。如果 bc|a,那么 b|a,c|a。如果 b|a,c|a,且( b,c)=1,那么 bc|a。如果 c|b,b|a, 那么 c|a. a 个连续自然数中必恰有一个数能被a 整除。5带余除法一般地,如果 a 是整数, b 是整数( b0 ),那么一定有另外两个整数q 和 r,0rb,使得 a=bq+r 当 r=0 时,我们称 a 能被 b 整除。当 r0 时,我们称 a 不能被 b 整除, r 为 a 除以 b 的余数, q 为 a 除以 b 的不完全商(亦简称为商)。用带余数除式又可以表示为ab=qr, 0 rb a=b q+r 6. 唯一分解定理任何一个大于 1 的自然数 n 都可以写成质数的连乘积,即n= p1 p2 .pk 7. 约数个数与约数和定理设自然数 n 的质因子分解式如n= p1 p2 . pk 那么:n 的约数个数: d(n)=(a1+1)(a2+1).(ak+1) n 的所有约数和: (1+P1+P1 +p1 ) (1+P2+P2 +p2 ) (1+Pk+Pk +pk )8. 同余定理精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思 同余定义:若两个整数a,b 被自然数 m 除有相同的余数,那么称a,b 对于模 m 同余,用式子表示为ab(mod m) 若两个数 a,b 除以同一个数 c 得到的余数相同,则a,b 的差一定能被 c 整除。两数的和除以 m 的余数等于这两个数分别除以m 的余数和。两数的差除以 m 的余数等于这两个数分别除以m 的余数差。两数的积除以 m 的余数等于这两个数分别除以m 的余数积。9完全平方数性质平方差:A -B =(A+B)(A-B),其中我们还得注意 A+B, A-B 同奇偶性。约数:约数个数为奇数个的是完全平方数。约数个数为 3 的是质数的平方。质因数分解:把数字分解,使他满足积是平方数。平方和。10孙子定理(中国剩余定理)11辗转相除法12数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、几何图形1平面图形多边形的内角和N 边形的内角和 =(N-2) 180等积变形(位移、割补)三角形内等底等高的三角形平行线内等底等高的三角形公共部分的传递性极值原理(变与不变)三角形面积与底的正比关系S1S2 =ab ;S1S2=S4 S3 或者 S1S3=S2 S4 相似三角形性质(份数、比例); S1S2=a2A2 S1S3S2S4= a2 b2abab ; S=(a+b)2 燕尾定理SABG:SAGCSBGE:SGECBE:EC;SBGA:SBGCSAGF:SGFCAF:FC;SAGC:SBCGSADG:SDGBAD:DB;差不变原理知 5-2=3,则圆点比方点多3。隐含条件的等价代换例如弦图中长短边长的关系。组合图形的思考方法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思化整为零先补后去正反结合2立体图形规则立体图形的表面积和体积公式不规则立体图形的表面积整体观照法体积的等积变形水中浸放物体: V 升水=V 物测啤酒瓶容积: V=V 空气+V 水三视图与展开图最短线路与展开图形状问题染色问题几面染色的块数与 “ 芯” 、棱长、顶点、面数的关系。四、典型应用题1植树问题开放型与封闭型间隔与株数的关系2方阵问题外层边长数 -2=内层边长数(外层边长数 -1) 4=外周长数外层边长数 2-中空边长数 2=实面积数3列车过桥问题车长 +桥长=速度 时间车长甲 +车长乙 =速度和 相遇时间车长甲 +车长乙 =速度差 追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题车长=速度和 相遇时间车长=速度差 追及时间4年龄问题差不变原理5鸡兔同笼假设法的解题思想6牛吃草问题原有草量 =(牛吃速度 -草长速度) 时间7平均数问题8盈亏问题分析差量关系9和差问题10和倍问题11差倍问题12逆推问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思还原法,从结果入手13代换问题列表消元法等价条件代换五、行程问题1相遇问题路程和 =速度和 相遇时间2追及问题路程差 =速度差 追及时间3流水行船顺水速度 =船速+水速逆水速度 =船速-水速船速=(顺水速度 +逆水速度) 2 水速=(顺水速度 -逆水速度) 2 4多次相遇线型路程:甲乙共行全程数 =相遇次数 2-1 环型路程:甲乙共行全程数 =相遇次数其中甲共行路程 =单在单个全程所行路程 共行全程数5环形跑道6行程问题中正反比例关系的应用路程一定,速度和时间成反比。速度一定,路程和时间成正比。时间一定,路程和速度成正比。7钟面上的追及问题。时针和分针成直线;时针和分针成直角。8结合分数、工程、和差问题的一些类型。9行程问题时常运用 “ 时光倒流 ” 和“ 假定看成 ” 的思考方法。六、计数问题1加法原理:分类枚举2乘法原理:排列组合3容斥原理:总数量 =A+B+C-(AB+AC+BC)+ABC 常用:总数量 =A+B-AB 4抽屉原理:至多至少问题5握手问题在图形计数中应用广泛角、线段、三角形,长方形、梯形、平行四边形正方形精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思七、分数问题1量率对应2以不变量为 “1”3利润问题4浓度问题倒三角原理例:5工程问题合作问题水池进出水问题6按比例分配八、方程解题1等量关系解方程技巧恒等变形2二元一次方程组的求解代入法、消元法3不定方程的分析求解以系数大者为试值角度4不等方程的分析求解九、找规律周期性问题年月日、星期几问题余数的应用数列问题等差数列通项公式an=a1+(n-1)d 求项数:n= 求和:S= 等比数列求和:S= 裴波那契数列策略问题抢报 30 放硬币最值问题最短线路a.一个字符阵组的分线读法b.在格子路线上的最短走法数最优化问题a.统筹方法b.烙饼问题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思十、算式谜1填充型2替代型3填运算符号4横式变竖式5结合数论知识点十一、数阵问题1相等和值问题2数列分组知行列数,求某数知某数,求行列数3幻方奇阶幻方问题:杨辉法罗伯法偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、逻辑推理1等价条件的转换2列表法3对阵图竞赛问题,涉及体育比赛常识十三、智力问题1突破思维定势2某些特殊情境问题十四、解题方法(结合杂题的处理)1代换法2消元法3倒推法4假设法5反证法6极值法7设数法8整体法9画图法10列表法11排除法精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 9 页读书之法 ,在循序而渐进 ,熟读而精思12染色法13构造法14配对法15列方程方程不定方程不等方程精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 9 页