欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年新人教版八年级下数学教案第十七章反比例函数 .pdf

    • 资源ID:23801252       资源大小:176.84KB        全文页数:11页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年新人教版八年级下数学教案第十七章反比例函数 .pdf

    学习必备欢迎下载第十七章反比例函数1711 反比例函数的意义一、教学目标1使学生理解并掌握反比例函数的概念2能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1重点: 理解反比例函数的概念,能根据已知条件写出函数解析式2难点: 理解反比例函数的概念三、例题的意图分析教材第 39 页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。教材第 40 页的例 1 是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。补充例 1、例 2 都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题, 此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。四、课堂引入1回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?五、例习题分析例 1见教材 P40 分析: 因为 y 是 x 的反比例函数, 所以先设xky,再把 x2 和 y6 代入上式求出常数 k,即利用了待定系数法确定函数解析式。例 1(补充)下列等式中,哪些是反比例函数(1)3xy( 2)xy2(3) xy21 (4)25xy(5)xy23(6)31xy(7)yx4 分析:根据反比例函数的定义,关键看上面各式能否改写成xky(k 为常数, k0)的形式, 这里(1)、 (7)是整式, (4)的分母不是只单独含x, (6)改写后是xxy31,分子不是常数,只有(2)、( 3)、( 5)能写成定义的形式例 2(补充)当m 取什么值时,函数23)2(mxmy是反比例函数?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 11 页学习必备欢迎下载分析:反比例函数xky(k0)的另一种表达式是1kxy(k0),后一种写法中x 的次数是 1,因此 m 的取值必须满足两个条件,即m2 0 且 3m2 1,特别注意不要遗漏k0 这一条件,也要防止出现3m21 的错误。解得 m 2 例 3 (补充)已知函数y y1y2,y1与 x 成正比例, y2与 x 成反比例,且当x1 时,y4;当 x2 时, y5 (1)求 y 与 x 的函数关系式(2)当 x 2时,求函数y 的值分析:此题函数y 是由 y1和 y2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y1、 y2与 x 的函数关系式, 再代入数值, 通过解方程或方程组求出比例系数的值。这里要注意y1与 x 和 y2与 x 的函数关系中的比例系数不一定相同,故不能都设为k,要用不同的字母表示。略解:设y1k1x(k10),xky22( k20),则xkxky21,代入数值求得k12,k22,则xxy22,当 x 2 时, y 5 六、随堂练习1苹果每千克x 元,花 10 元钱可买y 千克的苹果,则y 与 x 之间的函数关系式为2若函数28)3(mxmy是反比例函数,则m 的取值是3矩形的面积为4,一条边的长为x,另一条边的长为y,则 y 与 x 的函数解析式为4 已知 y 与 x 成反比例,且当 x 2时, y3, 则 y 与 x 之间的函数关系式是,当 x 3 时, y5函数21xy中自变量x 的取值范围是七、课后练习已知函数yy1y2, y1与 x1 成正比例, y2与 x 成反比例,且当x1 时, y0;当 x4 时, y9,求当 x 1 时 y 的值答案: y4 课后反思:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 11 页学习必备欢迎下载1712 反比例函数的图象和性质(1)一、教学目标1会用描点法画反比例函数的图象2结合图象分析并掌握反比例函数的性质3体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点1重点: 理解并掌握反比例函数的图象和性质2难点: 正确画出图象,通过观察、分析,归纳出反比例函数的性质三、例题的意图分析教材第 41 页的例 2 是让学生经历用描点法画反比例函数图象的过程,一方面能进一步熟悉作函数图象的方法,提高基本技能;另一方面可以加深学生对反比例函数图象的认识,了解函数的变化规律,从而为探究函数的性质作准备。补充例 1 的目的一是复习巩固反比例函数的定义,二是通过对反比例函数性质的简单应用,使学生进一步理解反比例函数的图象特征及性质。补充例 2 是一道典型题, 是关于反比例函数图象与矩形面积的问题,要让学生理解并掌握反比例函数解析式xky(k0)中k的几何意义。四、课堂引入提出问题:1一次函数ykxb(k、b 是常数, k0)的图象是什么?其性质有哪些?正比例函数 ykx(k0)呢?2画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3反比例函数的图象是什么样呢? 五、例习题分析例 2见教材 P41,用描点法画图,注意强调:(1)列表取值时, x0,因为 x0 函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于 x0,k0,所以 y0,函数图象永远不会与x 轴、 y 轴相交,只是无限靠近两坐标轴例 1(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m 值,并指出在每个象限内y 随 x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1kxy( k0)自变量x的指数是 1,二是根据反比例函数的性质:当图象位于第二、四象限时,k 0,则m10,不要忽视这个条件略解:32)1(mxmy是反比例函数m23 1,且 m1 0 又图象在第二、四象限m1 0 解得2m且 m1 则2m精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 11 页学习必备欢迎下载例 2(补充)如图,过反比例函数xy1(x0)的图象上任意两点A、B 分别作 x 轴的垂线,垂足分别为C、D,连接 OA 、OB,设 AOC 和 BOD 的面积分别是S1、S2,比较它们的大小,可得()(A)S1 S2(B)S1S2 (C)S1S2(D)大小关系不能确定分析:从反比例函数xky(k0)的图象上任一点P(x,y)向 x 轴、 y 轴作垂线段,与 x 轴、 y 轴所围成的矩形面积kxyS,由此可得S1S2 21,故选 B 六、随堂练习1已知反比例函数xky3,分别根据下列条件求出字母k 的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y 随 x 的增大而增大2函数 y axa 与xay(a0)在同一坐标系中的图象可能是()3在平面直角坐标系内,过反比例函数xky(k0)的图象上的一点分别作x 轴、y轴的垂线段,与x 轴、 y 轴所围成的矩形面积是6,则函数解析式为七、课后练习1若函数xmy)12(与xmy3的图象交于第一、三象限,则m 的取值范围是2 反比例函数xy2, 当 x 2 时, y; 当 x 2 时; y 的取值范围是;当 x 2时; y 的取值范围是3 已知反比例函数yaxa()226,当x0时, y 随 x 的增大而增大,求函数关系式答案: 3xya25,5精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 11 页学习必备欢迎下载1712 反比例函数的图象和性质(2)一、教学目标1使学生进一步理解和掌握反比例函数及其图象与性质2能灵活运用函数图象和性质解决一些较综合的问题3深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法二、重点、难点1重点: 理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题2难点: 学会从图象上分析、解决问题三、例题的意图分析教材第 44 页的例 3 一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式,复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由 “数” 到 “形”,体会数形结合思想,加深学生对反比例函数图象和性质的理解。教材第 44 页的例 4 是已知函数图象求解析式中的未知系数,并由双曲线的变化趋势分析函数值y 随 x 的变化情况,此过程是由“形”到“数”,目的是为了提高学生从函数图象中获取信息的能力,加深对函数图象及性质的理解。补充例 1 目的是引导学生在解有关函数问题时,要数形结合, 另外, 在分析反比例函数的增减性时,一定要注意强调在哪个象限内。补充例 2 是一道有关一次函数和反比例函数的综合题,目的是提高学生的识图能力,并能灵活运用所学知识解决一些较综合的问题。四、课堂引入复习上节课所学的内容1什么是反比例函数?2反比例函数的图象是什么?有什么性质?五、例习题分析例 3见教材 P44 分析:反比例函数xky的图象位置及y 随 x 的变化情况取决于常数k 的符号, 因此要先求常数k,而题中已知图象经过点A(2,6),即表明把A 点坐标代入解析式成立,所以用待定系数法能求出k,这样解析式也就确定了。例 4见教材 P44 例 1(补充)若点A( 2,a)、 B( 1,b)、 C(3,c)在反比例函数xky(k0)图象上,则a、b、 c 的大小关系怎样?分析:由k0 可知,双曲线位于第二、四象限,且在每一象限内,y 随 x 的增大而增大,因为A、B 在第二象限,且1 2,故 ba0;又 C 在第四象限,则c0,所以ba0c 说明:由于双曲线的两个分支在两个不同的象限内,因此函数 y 随 x 的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k0 时 y 随 x 的增大而增大,就会误认为 3 最大,则 c 最大,出现错误。此题还可以画草图,比较 a、b、c 的大小, 利用图象直观易懂,不易出错, 应学会使用。例 2 (补充)如图,一次函数 ykxb 的图象与反比例函数xmy的图象交于A( 2,1)、 B(1, n)两点精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 11 页学习必备欢迎下载(1)求反比例函数和一次函数的解析式(2) 根据图象写出一次函数的值大于反比例函数的值的x 的取值范围分析:因为A 点在反比例函数的图象上,可先求出反比例函数的解析式xy2,又 B 点在反比例函数的图象上,代入即可求出n 的值,最后再由A、B 两点坐标求出一次函数解析式y x1,第( 2)问根据图象可得x 的取值范围x 2 或 0 x1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。六、随堂练习1若直线ykxb 经过第一、二、四象限,则函数xkby的图象在()(A)第一、三象限(B)第二、四象限(C)第三、四象限(D)第一、二象限2已知点( 1,y1)、( 2,y2)、( ,y3)在双曲线xky12上,则下列关系式正确的是()(A)y1y2 y3(B)y1y3y2(C)y2y1 y3(D)y3y1y2七、课后练习1 已知反比例函数xky12的图象在每个象限内函数值y 随自变量 x 的增大而减小,且 k 的值还满足) 12(29k2k1,若 k 为整数,求反比例函数的解析式2已知一次函数bkxy的图像与反比例函数xy8的图像交于A、B 两点,且点 A 的横坐标和点B 的纵坐标都是2 ,求( 1)一次函数的解析式;( 2) AOB 的面积答案:1xy1或xy3或xy52( 1)y x2,( 2)面积为6 课后反思:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 11 页学习必备欢迎下载172 实际问题与反比例函数(1)一、教学目标1利用反比例函数的知识分析、解决实际问题2渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1重点: 利用反比例函数的知识分析、解决实际问题2难点: 分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第 50 页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。教材第 51 页的例 2 是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1 稍复杂些, 目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题四、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?五、例习题分析例 1见教材第50 页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为 d,满足基本公式:圆柱的体积底面积高,由题意知S 是函数, d 是自变量,改写后所得的函数关系式是反比例函数的形式,( 2)问实际上是已知函数S 的值,求自变量d 的取值,(3)问则是与(2)相反例 2见教材第51 页分析:此题类似应用题中的“工程问题”,关系式为工作总量工作速度工作时间,由于题目中货物总量是不变的,两个变量分别是速度v 和时间 t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t 取最大值时,函数值v 取最小值是多少?例 1(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8 立方米时, 气球内的气压是多少千帕?(3)当气球内的气压大于144 千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P 与 V 是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P 与 V 的解析式,得VP96,( 3)问中当P 大于 144 千帕时,气球会爆炸,即当 P 不超过 144 千帕时,是安全范围。根据反比例函数的图象和性质,P 随 V 的增大而减精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 11 页学习必备欢迎下载小,可先求出气压P144 千帕时所对应的气体体积,再分析出最后结果是不小于32立方米六、随堂练习1京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v( km/h)之间的函数关系式为2 完成某项任务可获得500 元报酬, 考虑由 x 人完成这项任务, 试写出人均报酬y (元)与人数 x(人)之间的函数关系式3一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V10 时,1.43,( 1)求与 V 的函数关系式;(2)求当 V2 时氧气的密度答案:V3.14,当 V2 时,7.15 七、课后练习1小林家离工作单位的距离为3600 米,他每天骑自行车上班时的速度为v(米 /分),所需时间为t(分)(1)则速度v 与时间 t 之间有怎样的函数关系?(2)若小林到单位用15 分钟,那么他骑车的平均速度是多少?(2)如果小林骑车的速度最快为300 米/分,那他至少需要几分钟到达单位?答案:tv3600,v240,t 122学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6 吨计算,一学期(按150 天计算)刚好用完.若每天的耗煤量为x 吨,那么这批煤能维持y 天(1)则 y 与 x 之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1 吨,则这批煤能维持多少天?课后反思:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 11 页学习必备欢迎下载172 实际问题与反比例函数(2)一、教学目标1利用反比例函数的知识分析、解决实际问题2渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型二、重点、难点1重点: 利用反比例函数的知识分析、解决实际问题2难点: 分析实际问题中的数量关系,正确写出函数解析式,解决实际问题三、例题的意图分析教材第 52 页的例 3 和例 4 都需要用到物理知识,教材在例题前已给出了相关的基本公式,其中的数量关系具有反比例关系,通过对这两个问题的分析和解决,不但能复习巩固反比例函数的有关知识,还能培养学生应用数学的意识补充例题是一道综合题,有一定难度, 需要学生有较强的识图、分析和归纳等方面的能力,此题既有一次函数的知识,又有反比例函数的知识,能进一步深化学生对一次函数和反比例函数知识的理解和掌握,体会数形结合思想的重要作用,同时提高学生灵活运用函数观点去分析和解决实际问题的能力四、课堂引入1小明家新买了几桶墙面漆,准备重新粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么?2台灯的亮度、电风扇的转速都可以调节,你能说出其中的道理吗?五、例习题分析例 3见教材第52 页分析:题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式,得到函数动力F 是自变量动力臂l的反比例函数,当l1.5 时,代入解析式中求F 的值;( 2)问要利用反比例函数的性质,l越大 F越小,先求出当F200 时,其相应的l值的大小,从而得出结果。例 4见教材第53 页分析:根据物理公式PRU2,当电压U 一定时,输出功率P 是电阻 R 的反比例函数,则RP2220,( 2)问中是已知自变量R 的取值范围,即110R220,求函数 P 的取值范围,根据反比例函数的性质,电阻越大则功率越小,得 220P440 例 1 (补充)为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克 )与时间x(分钟 )成为正比例 ,药物燃烧后,y与 x 成反比例 (如图 ),现测得药物8 分钟燃毕,此时室内空气中每立方米的含药量6 毫克,请根据题中所提供的信息,解答下列问题:(1)药物燃烧时, y 关于 x 的函数关系式为,自变量 x 的取值范为;药物燃烧后,y 关于 x 的函数关系式为. (2)研究表明, 当空气中每立方米的含药量低于1.6 毫克时员工方可进办公室,那么从消毒开始,至少需要经过_分钟后,员工才能回到办公室;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 11 页学习必备欢迎下载(3)研究表明,当空气中每立方米的含药量不低于3 毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么 ? 分析:(1)药物燃烧时,由图象可知函数y 是 x 的正比例函数,设xky1,将点( 8,6)代人解析式,求得xy43,自变量 0 x8;药物燃烧后,由图象看出y 是 x 的反比例函数,设xky2,用待定系数法求得xy48(2)燃烧时,药含量逐渐增加,燃烧后,药含量逐渐减少,因此,只能在燃烧后的某一时间进入办公室,先将药含量y1.6 代入xy48,求出 x30,根据反比例函数的图象与性质知药含量y 随时间 x 的增大而减小,求得时间至少要30 分钟(3)药物燃烧过程中,药含量逐渐增加,当y3 时,代入xy43中,得 x4,即当药物燃烧4 分钟时,药含量达到3 毫克;药物燃烧后,药含量由最高6 毫克逐渐减少,其间还能达到3 毫克,所以当y3 时,代入xy48,得 x16,持续时间为1641210,因此消毒有效六、随堂练习1某厂现有800 吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是()(A)xy300(x0)(B)xy300(x0)(C)y300 x(x0)(D)y 300 x(x0)2已知甲、乙两地相s(千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为 a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米 /时)的函数图象大致是()3 你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识,一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示:(1)写出 y 与 S 的函数关系式;(2) 求当面条粗1.6mm2时, 面条的总长度是多少米?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 11 页学习必备欢迎下载七课后练习一场暴雨过后,一洼地存雨水20 米3,如果将雨水全部排完需t 分钟,排水量为a 米3/分,且排水时间为510 分钟(1)试写出t 与 a 的函数关系式,并指出a 的取值范围;(2)请画出函数图象(3)根据图象回答:当排水量为3 米3/分时,排水的时间需要多长?课后反思:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 11 页

    注意事项

    本文(2022年新人教版八年级下数学教案第十七章反比例函数 .pdf)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开