欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    常微分方程第二版答案第三章.doc

    • 资源ID:23839220       资源大小:619KB        全文页数:6页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    常微分方程第二版答案第三章.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流常微分方程第二版答案第三章.精品文档.习题31 1 判断下列方程在什么区域上保证初值解存在且唯一.1); 2); 3).解 1)因为及在整个平面上连续,所以在整个平面上满足存在唯一性定理的条件,因此在整个平面上初值解存在且唯一.2)因为除轴外,在整个平面上连续,在在整个平面上有界,所以除轴外,在整个平面上初值解存在且唯一.3)设,则故在的任何有界闭区域上,及都连续,所以除轴外,在整个平面上初值解存在且唯一.2 求初值问题 R:.的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设,则,所以显然,方程在R上满足解的存在唯一性定理,故过点的解的存在区间为:.设是方程的解,是第二次近似解,则在区间上,与的误差为 .取,故.3 讨论方程在怎样的区域中满足解的存在唯一性定理的条件.并求通过点的一切解.解 设,则.故在的任何有界闭区域上及都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,是过的一个解.又由解得.其中.所以通过点的一切解为及如图.4 试求初值问题的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为,一次近似为 ,二次近似为 ,三次近似为 ,四次近似为 ,五次近似为 ,一般地,利用数学归纳法可得次近似为所以取极限得原方程的解为5 设连续函数对是递减的,则初值问题,的右侧解是唯一的.证 设,是初值问题的两个解,令,则有.下面要证明的是当时,有.用反证法.假设当时,不恒等于0,即存在,使得,不妨设,由的连续性及,必有,使得,.又对于,有,则有由()以及对是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当时,有.从而证明方程的右侧解是唯一的.习题331 利用定理5证明:线性微分方程 () 的每一个解的(最大)存在区间为,这里假设在区间上是连续的.证 在任何条形区域(其中)中连续,取,则有故由定理5知道,方程的每一个解在区间中存在,由于是任意选取的,不难看出可被延拓到整个区间上.2 讨论下列微分方程解的存在区间: 1); 2); 3).解 1)因在整个平面上连续可微,所以对任意初始点,方程满足初始条件的解存在唯一.这个方程的通解为.显然,均是该方程在上的解.现以,为界将整个平面分为三个区域来讨论.)在区域内任一点,方程满足的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与,两直线相交,因而解的存在区间为.又在内,则方程满足的解递减,当时,以为渐近线,当时,以为渐近线.)在区域中,对任意常数,由通解可推知,解的最大存在区间是,又由于,则对任意,方程满足的解递增.当时,以为渐近线,且每个最大解都有竖渐近线,每一条与轴垂直的直线皆为某解的竖渐近线.)在区域中,类似,对任意常数,解的最大存在区间是,又由于,则对任意,方程满足的解递增.当时,以为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因在整个平面上连续,且满足不等式从而满足定理5的条件,故由定理5知,该方程的每一个解都以为最大存在区间.3)变量分离求得通解,故解的存在区间为.3设初值问题的解的最大存在区间为,其中是平面上的任一点,则和中至少有一个成立.证明 因在整个平面上连续可微,所以对任意初始点,方程满足初始条件的解存在唯一.很显然,均是该方程在上的解.现以,为界将整个平面分为三个区域来进行讨论.)在区域内任一点,方程满足的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与,两直线相交,因而解的存在区间为.这里有,.)在区域中,由于,积分曲线单调上升.现设位于直线的下方,即,则利用的右行解的延伸定理,得出的解可以延伸到的边界.另一方面,直线的下方,积分曲线是单调上升的,并且它在向右延伸时不可能从直线穿越到上方.因此它必可向右延伸到区间.故至少成立.类似可证,对,至少有成立.4 设二元函数在全平面连续.求证:对任何,只要适当小,方程的满足初值条件的解必可延拓到.证明 因为在全平面上连续,令,则在全平面上连续,且满足.对任何,选取,使之满足.设方程经过点的解为,在平面内延伸为方程的最大存在解时,它的最大存在区间为,由延伸定理可推知,或或为有限数且.下证后一种情形不可能出现.事实上,若不然,则必存在,使.不妨设.于是必存在,使,().此时必有但,从而矛盾. 因此,即方程的解()必可延拓到.

    注意事项

    本文(常微分方程第二版答案第三章.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开