新人教版八年级上册数学,第一章:三角形.doc
【精品文档】如有侵权,请联系网站删除,仅供学习与交流新人教版八年级上册数学,第一章:三角形.精品文档.人教版八年级数学(上册),第一章:三角形一、三角形相关概念1三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:三条线段;不在同一直线上;首尾顺次相接2三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作ABC,其中线段AB、BC、AC是三角形的三条边,A、B、C分别表示三角形的三个内角3三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线注意:三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线三角形有三条角平分线且相交于一点,这一点一定在三角形的内部三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线注意:三角形有三条中线,且它们相交三角形内部一点画三角形中线时只需连结顶点及对边的中点即可(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高注意:三角形的三条高是线段画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高(二)三角形三边关系定理三角形两边之和大于第三边,故同时满足ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b三角形两边之差小于第三边,故同时满足ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性例如起重机的支架采用三角形结构就是这个道理三角形内角和性质的推理方法有多种,常见的有以下几种:(四)三角形的内角结论1:三角形的内角和为180°表示: 在ABC中,A+B+C=180°(1)构造平角可过A点作MNBC(如图) 可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得 邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余表示:如图,在直角三角形ABC中,C=90°,那么A+B=90°(因为A+B+C=180°)注意:在三角形中,已知两个内角可以求出第三个内角如:在ABC中,C=180°(A+B)在三角形中,已知三个内角和的比或它们之间的关系,求各内角如:ABC中,已知A:B:C=2:3:4,求A、B、C的度数(五)三角形的外角1意义:三角形一边与另一边的延长线组成的角叫做三角形的外角如图,ACD为ABC的一个外角,BCE也是ABC的一个外角,这两个角为对顶角,大小相等2性质:三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.如图中,ACD=A+B , ACD>A , ACD>B.三角形的一个外角与与之相邻的内角互补3外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角(六)多边形多边形的对角线条对角线n边形的内角和为(n2)×180°多边形的外角和为360°考点11.对下面每个三角形,过顶点A画出中线,角平分线和高.考点21、下列说法错误的是( ).A三角形的三条高一定在三角形内部交于一点B三角形的三条中线一定在三角形内部交于一点C三角形的三条角平分线一定在三角形内部交于一点D三角形的三条高可能相交于外部一点2、下列四个图形中,线段BE是ABC的高的图形是( )3如图3,在ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C恰好落在点D处,则B等于( )A25° B30° C45° D60° 4. 如图4,已知AB=AC=BD,那么1和2之间的关系是( )A. 1=22 B. 21+2=180° C. 1+32=180° D. 31-2=180°5.如图5,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且= 4,则等于( )A2 B. 1 C. D. 6.如图7,BD=DE=EF=FC,那么,AE是 _ 的中线。7.如图6,BD=,则BC边上的中线为 _,=_。8.如图1,在ABC中,BAC=600,B=450,AD是ABC的一条角平分线,则DAC= 0,ADB= 09.如图2,在ABC中,AE是中线,AD是角平分线,AF是高,则根据图形填空:F2题EDCBA1题 DCABE= = ;BAD= = AFB= =900;DCBA10.如图在ABC中,ACB=900,CD是边AB上的高。那么图中与A相等的角是( ) A、 B B、 ACD C、 BCD D、 BDC11.在ABC中,A=C=ABC, BD是角平分线,求A及BDC的度数(12.已知,如图,ABCD,AE平分BAC,CE平分ACD,求E的度数_E_D_B_C_A13.如图,在ABC中,D,E分别是BC,AD的中点,=4,求.考点31.关于三角形的边的叙述正确的是 ( )A、三边互不相等 B、至少有两边相等 C、任意两边之和一定大于第三边 D、最多有两边相等2.已知ABC中,A=200,B=C,那么三角形ABC是( )A、锐角三角形 B、直角三角形 C、钝角三角形 D、正三角形3.下面说法正确的是个数有()如果三角形三个内角的比是,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果A=B=C,那么ABC是直角三角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在ABC中,若AB=C,则此三角形是直角三角形。A、3个 B、4个 C、5个 D、5个B CADE4.一个多边形中,它的内角最多可以有 个锐角5.如图是一副三角尺拼成图案,则AEB_°.考点41.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A. 3cm, 4cm, 8cm B. 8cm, 7cm, 15cm C. 13cm, 12cm, 20cm D. 5cm, 5cm, 11cm2.下列长度的三条线段能组成三角形的是 ( )A、 3,4,8 B、 5,6,11 C、 1,2,3 D、 5,6,103.等腰三角形两边长分别为3,7,则它的周长为( )A、13 B、17 C、13或17 D、不能确定4.ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是_.5.长为11,8,6,4的四根木条,选其中三根组成三角形有 种选法,它们分别是 6.一个等腰三角形的两条边长分别为8和3,那么它的周长为 7.已知a,b,c是三角形的三边长,化简|a-b+c|+|a-b-c|.考点5 1.不是利用三角形稳定性的是( )A、自行车的三角形车架 B、三角形房架 C、照相机的三角架 D、矩形门框的斜拉条2.下列图形中具有稳定性的有()A 、正方形 B、长方形 C、梯形 D、 直角三角形3.装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正六边形。若只选购其中某一种地砖镶嵌地面,可供选用的地砖有( ) A. B. C. D. 4.下列图形中具有稳定性有( )A、 2个 B、 3个 C、 4个 D、 5个5、如图,一扇窗户打开后用窗钩AB可将其固定,这里所运用的几何原理是( )A、三角形的稳定性 B、两点确定一条直线C、两点之间线段最短 D、垂线段最短6.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的 性;考点61.已知ABC的三个内角的度数之比A:B:C=1:3:5,则B= 0,C= 02.如图,已知点P在ABC内任一点,试说明A与P的大小关系3如图4,1+2+3+4等于多少度;考点71、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形2、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A. 30° B. 60° C. 90° D. 120° 3、已知三角形的三个外角的度数比为234,则它的最大内角的度数( ).A. 90° B. 110° C. 100° D. 120° 4、如图,下列说法错误的是( )A、B >ACDB、B+ACB =180°AC、B+ACB <180°D、HEC >B5、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ).A、直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定6、如图,若A=100°,B=45°,C=38°,则DFE等于( )A. 120° B. 115° C. 110° D. 105° 7、如图,1=_.8、如图,则1=_,2=_,3=_,9、已知等腰三角形的一个外角为150°,则它的底角为_.10、如图,在ABC中,D是BC边上一点,1=2,3=4,BAC=63°,求DAC的度数.考点81一个多边形的内角和等于它的外角和,这个多边形是 ( )A 、三角形 B、 四边形 C、 五边形 D、 六边形2一个多边形内角和是10800,则这个多边形的边数为 ( )A、 6 B、 7 C、 8 D、 93一个多边形的内角和是外角和的2倍,它是( )A、 四边形 B、 五边形 C、 六边形 D、 八边形4、一个多边形的边数增加一倍,它的内角和增加( )A. 180° B. 360° C. (n-2)·180° D. n·1805、若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形 B、十边形 C、十二边形 D、十四边形6、正方形每个内角都是 _,每个外角都是 _。7、多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 条。8、六边形共有_条对角线,内角和等于_,每一个内角等于_。9、内角和是1620°的多边形的边数是 _。10、如果一个多边形的每一外角都是24°,那么它是_边形。11、将一个三角形截去一个角后,所形成的一个新的多边形的内角和_。12、一个多边形的内角和与外角和之比是52,则这个多边形的边数为_。13、一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有_条边。14.已知一个十边形中九个内角的和的度数是12900,那么这个十边形的另一个内角为 度15、.如图,CDAF,CDE=BAF,ABBC,BCD=124°,DEF=80°(1)观察直线AB与直线DE的位置关系,你能得出什么结论?并说明理由;(2)试求AFE的度数16、阅读材料,并填表:_(3)_(2)_(1)B_A_C_P_1_P_1_C_A_B_P_2_P_2_B_A_C_P_1_P_3在ABC中,有一点P1,当P1,A,B,C没有任何三点在同一条直线上时,可构成三个不重叠的小三角形(如图(1).当ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?完成下表ABC内点的个数1231002构成不重叠的小三角形的个数35考点91. 下列正多边中,能铺满地面的是()A、正方形 B、 正五边形 C、 等边三角形 D、 正六边形2.下列正多边形的组合中,能够铺满地面的是()A、正六边形和正三角形 B、正三角形和正方形 C、正八边形和正方形 D、正五边形和正八边形3.下列正多边形的组合中,能够铺满地面的是( ).A. 正六边形和正三角形 B. 正三角形和正方形 C. 正八边形和正方形 D. 正五边形和正八边形4.用正三角形和正十二边形镶嵌,可能情况有( )种.A、1 B、2 C、3 D、45.某装饰公司出售下列形状的地砖:正方形;长方形;正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( )种.A、1 B、2 C、3 D、46.小李家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小李不应购买的地砖形状是( )A、正方形 B、正六边形 C、正八边形 D、正十二边形_ 第1个_ 第3个_ 第?2个7.用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有_个正三角形和_个正四边形。8第n个图案中有白色地砖_块._综合101.如图,在ABC中,B, C的平分线交于点O.ABCO(1)若A=500,求BOC的度数.(2)设A=n0(n为已知数),求BOC的度数.2.某零件如图所示,图纸要求A=90°,B=32°,C=21°,当检验员量得BDC=145°,就断定这个零件不合格,ABCD你能说出其中的道理吗?3.如图,在ABC中,ADBC,CE是ABC的角平分线,AD、CE交于F点.当BAC=80°,B=40°时,求ACB、AEC、AFE的度数. 4.如图,在直角三角形ABC中,ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)ABC的面积; (2)CD的长;(3)作出ABC的边AC上的中线BE,并求出ABE的面积;(4)作出BCD的边BC边上的高DF,当BD=11cm 时,试求出DF的长。5.在ABC中,已知ABC=66°,ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求ABE、ACF和BHC的度数.6.如图所示,在ABC中,B=C,BAD=40°,并且ADE=AED,求CDE的度数7.如图:ABCD,直线 交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时, ,说明理由?(2)当点N在射线FD上运动时, 与 有什么关系?并说明理由.8.图1-4-27,已知在ABC中,AB=AC,A=40°,ABC的平分线BD交AC于D.求:ADB和CDB的度数.9.已知:如图5130,在ABC中,ACB90°,CD为高,CE平分BCD,且ACD:BCD1:2,那么CE是AB边上的中线对吗?说明理由10.已知:如图5131,在ABC中有D、E两点,求证:BDDEECABAC11.如图18,ABCD,ADBC,A的2倍与C的3倍互补,BE平分ABC,求A,DEB的度数 12.如图19,已知,C=DAE,B=D,那么AB与DF平行吗?为什么? 13.如图,AD为ABC的中线,BE为ABD的中线(1)ABE=15°,BAD=40°,求BED的度数;(2)在BED中作BD边上的高;(3)若ABC的面积为40,BD=5,则点E到BC边的距离为多少?(1) 1114.阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形。图(一)给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形。请你按照上述方法将图(二)中的六边形进行分割,并写出得到的小三角形的个数以及求出每个图形中的六边形的内角和.试把这一结论推广至n边形,并推导出n 边形内角和的计算公式。 (1)15.探究规律:如图,已知直线,A、B为直线上的两点,C、P为直线上的两点。(1)请写出图中面积相等的各对三角形:_。(2)如果A、B、C为三个定点,点P在上移动,那么无论P点移动到任何位置总有: 与ABC的面积相等;n m OBAPC 理由是: 16.如图1,MA1NA2,则A1A2_度。 如图2,MA1NA3,则A1A2A3_度。 如图3,MA1NA4,则A1A2A3A4_度。 如图4,MA1NA5,则A1A2A3A4A5_度。 从上述结论中你发现了什么规律? 如图5,MA1NAn,则A1A2A3An_度。