最新图像的复原PPT课件.ppt
图像复原图像复原的一般过程: 弄清退化原因建立退化模型反向推演恢复图像 对图像复原结果的评价已确定了一些准则,这些准则包括最小均方准则、加权均方准则和最大熵准则等,这些准则是用来规定复原后的图像与原图像相比较的质量标准。 图像复原和图像增强是有区别的,二者的目的都是为了改善图像的质量。但图像增强不考虑图像是如何退化的,只通过试探各种技术来增强图像的视觉效果。因此,图像增强可以不顾增强后的图像是否失真,只要看得舒服就行。而图像复原就完全不同,需知道图像退化的机制和过程的先验知识,据此找出一种相应的逆过程方法,从而得到复原的图像。如果图像已退化,应先作复原处理,再作增强处理。 图像复原模型图像的退化/复原过程模型 图像f(x,y)被线性操作h(x,y)所模糊,并叠加上噪声n(x,y),构成了退化后的图像g(x,y)。退化后的图像与复原滤波器卷积得到复原的f(x,y)图像。 退化函数H复原滤波f(x,y)f(x,y)g(x,y)n(x,y)噪声退化复原对于线性移不变系统而言),(),(),(),(yxnddyxhfyxg),(),(),(yxnyxhyxf上式两边进行傅立叶变换得),(),(),(),(vuNvuHvuFvuG式中G(u,v),F(u,v),H(u,v)和N(u,v)分别是g(x,y), f(x,y), h(x,y) 和n(x,y)的二维傅立叶变换。H(u,v)称为系统的传递函数。从频率域角度看,它使图像退化,因而反映了成像系统的性能。 逆滤波复原法通常在无噪声的理想情况下,上式可简化 ),(),(),(vuHvuFvuG),(/ ),(),(vuHvuGvuF则 逆滤波复原法1/H(u,v)称为逆滤波器。对上式再进行傅立叶反变换可得到f(x,y)。但实际上碰到的问题都是有噪声,因而只能求F(u,v)的估计值 ),(vuF),(),(),(),(vuHvuNvuFvuF然后再作傅立叶逆变换得 dudvevuHvuNyxfyxfvyuxj)(21),(),(),(),(这就是逆滤波复原的基本原理。其复原过程可归纳如下:(1)对退化图像g(x,y)作二维离散傅立叶变换,得到G(u,v);(2)计算系统点扩散函数h(x,y)的二维傅立叶变换,得到H(u,v)。 这一步值得注意的是,通常h(x,y)的尺寸小于g(x,y)的尺寸。为了消除混叠效应引起的误差,需要把h(x,y)的尺寸延拓。(3)计算(4)计算 的逆傅立叶变换,求得 。 ),(vuF),(yxf),(vuF 逆滤波复原法 若噪声为零,则采用逆滤波恢复法能完全再现原图像。若噪声存在,而且H(u,v)很小或为零时,则噪声被放大。这意味着退化图像中小噪声的干扰在H(u,v)较小时,会对逆滤波恢复的图像产生很大的影响,有可能使恢复的图像和f(x,y)相差很大,甚至面目全非。 ),(),(),(),(vuHvuNvuFvuF病态性质 (1) H(u,v)= 0 :无法确定F(u,v) (2)H(u,v)0:放大噪声 逆滤波复原法 逆滤波复原法 解决该病态问题的唯一方法就是避开H(u,v)的零点即小数值的H(u,v)。两种途径: 一是:在H(u,v)=0及其附近,人为地仔细设置H-1(u,v)的值,使N(u,v)*H-1(u,v)不会对产生太大影响。下图给出了H(u,v)、H-1(u,v)同改进的滤波特性HI(u,v)的一维波形,从中可看出与正常的滤波的差别。 (a)图像退化响应 (b)逆滤波器响应 (c)改进的逆滤波器响应 逆滤波复原法二是:使H(u,v)具有低通滤波性质。202220221)(0)(),(1),(DvuDvuvuHvuH (a)点光源f(x,y)。(b)退化图像g(x,y) G(u,v)=H(u,v)F(u,v)H(u,v) 逆滤波复原法 (a)原图;(b)退化图像;(c)H(u,v);(d)H(u,v)0 逆滤波复原法 逆滤波复原方法数学表达式简单,物理意义明确。然而存在着上面讲到的缺点,且难以克服。因此,在逆滤波理论基础上,不少人从统计学观点出发,设计一类滤波器用于图像复原,以改善复原图像质量。 Wienner滤波恢复的思想是在假设图像信号可近似看作平稳随机过程的前提下,按照使恢复的图像与原图像f(x,y)的均方差最小原则来恢复图像。 维纳滤波复原法维纳滤波复原法 功率谱特征:图像的功率谱具有低通性,噪声的功率谱为常数或变化平缓。 图像信号近似看作平稳随机过程。 图像恢复准则:f(x,y)和 的之间的均方误差e2达到最小,即 线性滤波:寻找点扩散函数hw(x,y),使得),(yxf),(),(22yxfyxfMinEe),(*),(),(yxgyxhyxfw),(),(),(vuGvuHvuFW则有),(),(/ ),(),(),(*),(2vuGvuPvuPvuHvuHvuFfn),(),(),(),(*),(2vuPvuPvuHvuHvuHfnw由Andrews和Hunt推导满足这一要求的传递函数为: 这里,H*(u,v)是成像系统传递函数的复共轭;Hw(u,v)就是维纳滤波器的传递函数。Pn(u,v)是噪声功率谱;Pf(u,v)是输入图像的功率谱。 维纳滤波复原法维纳滤波复原法采用维纳滤波器的复原过程步骤如下:(1)计算图像g(x,y)的二维离散傅立叶变换得到G(u,v)。(2)计算点扩散函数hw(x,y)的二维离散傅立叶变换。同逆滤波一样,为了避免混叠效应引起的误差,应将尺寸延拓。(3)估算图像的功率谱密度Pf和噪声的谱密度Pn。(4) 计算图像的估计值 。(5)计算 的逆付氏变换,得到恢复后的图像 。 ),(vuF),(yxf),(vuF这一方法有如下特点:(1)当H(u,v)0或幅值很小时,分母不为零,不会造成严重的运算误差。(2)在信噪比高的频域,即Pn(u,v)Pf(u,v)(3)在信噪比很小的频域,即|H(u,v)|Pn(u,v)/Pf(u,v), HW(u,v)= 0),(),(/ ),(),(),(*),(2vuGvuPvuPvuHvuHvuFfn维纳滤波复原法),(1),(vuHvuHW对于噪声功率谱Pn(u,v),可在图像上找一块恒定灰度的区域,然后测定区域灰度图像的功率谱作为Pn(u,v)。 去除由匀速运动引起的模糊去除由匀速运动引起的模糊 在获取图像过程中,由于景物和摄像机之间的相对运动,往往造成图像的模糊。其中由均匀直线运动所造成的模糊图像的恢复问题更具有一般性和普遍意义。因为变速的、非直线的运动在某些条件下可以看成是均匀的、直线运动的合成结果。 设图像f(x,y)有一个平面运动,令x0(t)和y0(t)分别为在x和y方向上运动的变化分量。t表示运动的时间。记录介质的总曝光量是在快门打开到关闭这段时间的积分。则模糊后的图像为 dttyytxxfyxgT000)(),(),(其中g(x,y)为模糊后的图像。上式就是由目标物或摄像机相对运动造成图像模糊的模型。 令G(u,v)为模糊图像g(x,y)的傅立叶变换,对上式两边傅立叶变换得 dxdyvyuxjdttyytxxfdxdyvyuxjyxgvuGT)(2exp)(),()(2exp),(),(000去除由匀速运动引起的模糊去除由匀速运动引起的模糊改变积分次序,则有 TdtdxdyvyuxjtyytxxfvuG000)(2exp)(),(),(由傅立叶变换的位移性质,可得TdttvytuxjvuF000T000)()(2exp),(t)dtvy(t)uxv)exp-j2F(u,v)G(u,可得 TdttvytuxjvuH000)()(2exp),(G(u,v)=H(u,v)F(u,v) 令 这是已知退化模型的傅立叶变换式。若x(t)、y(t)的性质已知,传递函数可直接求出,因此,f(x,y)可以恢复出来。 由水平方向均匀直线运动造成的图像模糊的模型及其恢复用以下两式表示: xyTatxfyxgTt10,),(LyxxykaxgykaxgxymaxgymaxgmAyxfmk,0/),1(),(/),1(),(),(0ax去除由匀速运动引起的模糊去除由匀速运动引起的模糊沿水平方向匀速运动造成的模糊图像的恢复处理例子。(a)是模糊图像,(b)是恢复后的图像。 去除由匀速运动引起的模糊去除由匀速运动引起的模糊(a) 原始图像 (b) 模糊图像 (c) 复原图像去除由匀速运动引起的模糊去除由匀速运动引起的模糊 图像的几何校正 图像在生成过程中,由于系统本身具有非线性或拍摄角度不同,会使生成的图像产生几何失真。几何失真一般分为系统失真和非系统失真。系统失真是有规律的、能预测的;非系统失真则是随机的。 当对图像作定量分析时,就要对失真的图像先进行精确的几何校正(即将存在几何失真的图像校正成无几何失真的图像),以免影响分析精度。基本的方法是先建立几何校正的数学模型;其次利用已知条件确定模型参数;最后根据模型对图像进行几何校正。通常分两步: 图像空间坐标的变换; 确定校正空间各像素的灰度值(灰度内插)。 空间坐标变换空间坐标变换实际工作中常以一幅图像为基准,去校正几何失真图像。通常基准图像f(x,y)是利用没畸变或畸变较小的摄像系统获得,而把有较大的几何畸变系统所摄入图像用g(x,y)表示,其畸变形式是多样的。设两幅图像坐标系统之间几何畸变关系能用解析式来描述若函数h1(x,y)和h2(x,y)已知,则可以从一个坐标系统的像素坐标算出在另一坐标系统的对应像素的坐标。在未知情况下, 通常h1(x,y)和h2(x,y)可用多项式来近似 式中N为多项式的次数,aij和bij为各项系数。 ),(1yxhx ),(2yxhy 1010NiNjjiijyxax1010NiNjjiijyxby 空间坐标变换空间坐标变换1已知h1(x,y)和h2(x,y)条件下的几何校正若我们具备先验知识h1(x,y)、h2(x,y),则希望将几何畸变图像g(x,y)恢复为基准几何坐标的图像f(x,y)。几何校正方法可分为直接法和间接法两种。直接法:先由 推出 ,然后依次计算每个像素的校正坐标值,保持各像素灰度值不变,这样生成一幅校正图像,但其像素分布是不规则的,会出现像素挤压、疏密不均等现象,不能满足要求。因此最后还需对不规则图像通过灰度内插生成规则的栅格图像。 ),(),(21yxhyyxhx),(),(21yxhyyxhx 几何校正几何校正 几何校正几何校正间接法:设恢复的图像像素在基准坐标系统为等距网格的交叉点,从网格交叉点的坐标(x,y)出发算出在已知畸变图像上的坐标(x,y),即 虽然点(x,y)坐标为整数,但(x,y)一般不为整数,不会位于畸变图像像素中心,因而不能直接确定该点的灰度值,而只能由其在畸变图像的周围像素灰度内插求出,作为对应像素(x,y)的灰度值,据此获得校正图像。由于间接法内插灰度容易,所以一般采用间接法进行几何纠正。 yxhyxhyx,),(212h1(x,y)和h2(x,y)未知条件下的几何校正 在这种情况下,通常用基准图像和几何畸变图像上多对同名像素的坐标来确定h1(x,y)和h2(x,y)。 假定基准图像像素的空间坐标(x,y)和被校正图像对应像素的空间坐标(x,y )之间的关系用二元多项式来表示。 几何校正几何校正式中N为多项式的次数,aij和bij为各项系数,aij,bij为待定数。 1010NiNjjiijyxax1010NiNjjiijyxby线性畸变可从基准图像上找出三个点(r1,s1),(r2,s2),(r3,s3) ,它们在畸变图像上对应的三个点坐标为(x1,y1) ,(x2,y2) ,(x3,y3)。 把坐标分别代入上式,并写成矩阵形式 当N1时通常用线性变换表示: xyayaxaax11011000 xybybxbby11011000yaxaax011000ybxbby011000 几何校正几何校正201210002saraax301310003saraax101110001saraax101110001yrbrbb201210002yrbrbb301310003yrbrbb011000332211321s r 1s r 1s r 1 bbbyyy011000332211321s r 1s r 1s r 1 aaaxxx 几何校正几何校正则可解联立方程或矩阵求逆,得到ai、bi系数,这样h1(x,y)和h2(x,y)确定了,则可用已知h1(x,y)和h2(x,y)的间接法校正几何失真的图像。 像素灰度内插方法像素灰度内插方法1最近邻元法在待求像素的四邻点中,将距离这点最近的邻点灰度赋给待求像素。该方法最简单,但校正后的图像有明显锯齿状,即存在灰度不连续性。2双线性内插法双线性内插法是利用待求像素四个邻点的灰度在二方向上作线性内插, 计算比最近邻点法复杂些,计算量大。但没有灰度不连续性的缺点,结果令人满意。它具有低通滤波性质,使高频分量受损,图像轮廓有一定模糊。 3三次内插法 该算法计算量最大,但内插效果最好,精度最高。 38 结束语结束语