欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    (精华讲义)数学北师大版八年级下册平行四边形的判定.doc

    • 资源ID:23951629       资源大小:1.09MB        全文页数:26页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    (精华讲义)数学北师大版八年级下册平行四边形的判定.doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date(精华讲义)数学北师大版八年级下册平行四边形的判定(精华讲义)数学北师大版八年级下册平行四边形的判定平行四边形的判定一、 平行四边形的判定定理 平行四边形的性质:两组对边分别平行;两组对边分别相等;对角线互相平分;两组对角分别相等。一、考虑“对边”关系思路1:证明两组对边分别相等ABCDEF(图1)123例1 如图1所示,在ABC中,ACB90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AFCE.求证:四边形ACEF是平行四边形. 证明:DE是BC的垂直平分线,DFBC,DB = DC.FDB = ACB = 90°. DFAC .CE = AE =AB.1 = 2 . 又EFAC,AF = CE = AE ,2 =1 =3 =F. ACEEFA. AC = EF .四边形ACEF是平行四边形. 思路2:证明两组对边分别平行ABCDEF例 2 已知:如图2,在ABC中,ABAC,E是AB的中点,D在BC上,延长ED到F,使ED = DF = EB. 连结FC.求证:四边形AEFC是平行四边形. 证明:ABAC,B =ACB.ED = EB,B =EDB.ACB =EDB. EFAC.E是AB的中点,BD = CD.EDB =FDC,ED = DF,EDBFDC. DEB =F.ABCF.四边形AEFC是平行四边形.思路3:证明一组对边平行且相等例3 如图3,已知平行四边形ABCD中,E、F 分别是AB、CD上的点,AE = CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形. 证明:四边形ABCD是平行四边形,AD = BC,A =C .ABCDEFMN3321又AE = CF,ADECBF.1 =2,DE = BF .M、N分别是DE、BF的中点,EM = FN .DCAB,3 =2.1 =3. EM FN .四边形ENFM是平行四边形.二、考虑“对角”关系 思路:证明两组对角分别相等例4 如图4,在正方形ABCD中,点E、F分别是AD、BC的中点.求证:(1)ABECDF;(2)四边形BFDE是平行四边形. 证明:(1)在正方形ABCD中,AB = CD,AD = BC,A =C =90°,AE =AD,CF =BC,AE = CF. ABECDF.(2)由(1)ABECDF知,1 =2,3 =4. BED =DFB.在正方形ABCD中,ABC =ADC,EBF =EDF. 四边形BFDE是平行四边形.三、考虑“对角线”的关系 思路:证明两条对角线相互平分例5 如图5,在平行四边形ABCD中, P1、P2是对角线BD的三等分点.ABCDOP1P2(图5)求证:四边形AP1CP2是平行四边形. 证明:连结AC交BD于O.四边形ABCD是平行四边形,OA = OC,OB = OD.BP1 = DP2 ,OP1 = OP2 .四边形AP1CP2是平行四边形.课堂学习检测一、填空题1平行四边形的判定方法有:从边的条件有:两组对边_的四边形是平行四边形;两组对边_的四边形是平行四边形;一组对边_的四边形是平行四边形从对角线的条件有:两条对角线_的四边形是平行四边形从角的条件有:两组对角_的四边形是平行四边形注意:一组对边平行另一组对边相等的四边形_是平行四边形(填“一定”或“不一定”)2四边形ABCD中,若AB180°,CD180°,则这个四边形_(填“是”、“不是”或“不一定是”)平行四边形3一个四边形的边长依次为a、b、c、d,且满足a2b2c2d22ac2bd,则这个四边形为_4四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO4,CO6,当AO_,DO_时,这个四边形是平行四边形5如图,四边形ABCD中,当12,且_时,这个四边形是平行四边形二、选择题6下列命题中,正确的是( )(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“ABCD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:如果再加上条件“BCAD”,那么四边形ABCD一定是平行四边形;如果再加上条件“BADBCD”,那么四边形ABCD一定是平行四边形;如果再加上条件“OAOC”,那么四边形ABCD一定是平行四边形;如果再加上条件“DBACAB”,那么四边形ABCD一定是平行四边形其中正确的说法是( )(A)(B)(C)(D)8能确定平行四边形的大小和形状的条件是( )(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9如图,在ABCD中,E、F分别是边AB、CD上的点,已知AECF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形10如图,在ABCD中,E、F分别是边AD、BC上的点,已知AECF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形11如图,在ABCD中,E、F分别在边BA、DC的延长线上,已知AECF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形12如图,在ABCD中,E、F分别在DA、BC的延长线上,已知AECF,FA与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形13已知:如图,四边形ABCD中,ABDC,ADBC,点E在BC上,点F在AD上,AFCE,EF与对角线BD交于点O,求证:O是BD的中点14已知:如图,ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF求证:CFAE.15已知:如图,ABC,D是AB的中点,E是AC上一点,EFAB,DFBE(1)猜想DF与AE的关系;(2)证明你的猜想1分别平行; 分别相等; 平行且相等;互相平分; 分别相等;不一定;2不一定是3平行四边形提示:由已知可得(ac)2(bd)20,从而46,4; 5AD,BC6D 7C 8D9提示:先证四边形BFDE是平行四边形,再由EMNF得证10提示:先证四边形AFCE、四边形BFDE是平行四边形,再由GEFH,GFEH得证11提示:先证四边形EBFD是平行四边形,再由EPQF得证12提示:先证四边形EBFD是平行四边形,再证REASFC,既而得到RESF13提示:连结BF,DE,证四边形BEDF是平行四边形14提示:证四边形AFCE是平行四边形15提示:(1)DF与AE互相平分;(2)连结DE,AF证明四边形ADEF是平行四边形16可拼成6个不同的四边形,其中有三个是平行四边形拼成的四边形分别如下: -

    注意事项

    本文((精华讲义)数学北师大版八年级下册平行四边形的判定.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开