欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    MATLAB程序设计及应用(第二版)课后实验答案.doc

    • 资源ID:23973053       资源大小:830KB        全文页数:109页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    MATLAB程序设计及应用(第二版)课后实验答案.doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-dateMATLAB程序设计及应用(第二版)课后实验答案MATLAB程序设计及应用(第二版)课后实验答案Matlab课后实验题答案实验一 MATLAB运算基础1. 先求下列表达式的值,然后显示MATLAB工作空间的使用情况并保存全部变量。(1) (2) ,其中(3) (4) ,其中t=0:0.5:2.5解:M文件:z1=2*sin(85*pi/180)/(1+exp(2)x=2 1+2*i;-.45 5;z2=1/2*log(x+sqrt(1+x2) a=-3.0:0.1:3.0;z3=(exp(0.3.*a)-exp(-0.3.*a)./2.*sin(a+0.3)+log(0.3+a)./2)t=0:0.5:2.5;z4=(t>=0&t<1).*(t.2)+(t>=1&t<2).*(t.2-1)+(t>=2&t<3) .*(t.2-2*t+1)2. 已知:求下列表达式的值:(1) A+6*B和A-B+I(其中I为单位矩阵)(2) A*B和A.*B(3) A3和A.3(4) A/B及BA(5) A,B和A(1,3,:);B2解: M 文件:A=12 34 -4;34 7 87;3 65 7;B=1 3 -1;2 0 3;3 -2 7; A+6.*B A-B+eye(3) A*B A.*B A3 A.3 A/B BA A,B A(1,3,:);B23. 设有矩阵A和B(1) 求它们的乘积C。(2) 将矩阵C的右下角3×2子矩阵赋给D。(3) 查看MATLAB工作空间的使用情况。解:. 运算结果:E=(reshape(1:1:25,5,5)'F=3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11;C= E*FH=C(3:5,2:3)C = 93 150 77 258 335 237 423 520 397 588 705 557 753 890 717H = 520 397 705 557 890 7174. 完成下列操作:(1) 求100,999之间能被21整除的数的个数。(2) 建立一个字符串向量,删除其中的大写字母。 解:(1) 结果:m=100:999;n=find(mod(m,21)=0);length(n)ans = 43(2). 建立一个字符串向量 例如:ch='ABC123d4e56Fg9'则要求结果是:ch='ABC123d4e56Fg9'k=find(ch>='A'&ch<='Z');ch(k)=ch =123d4e56g9实验二 MATLAB矩阵分析与处理1. 设有分块矩阵,其中E、R、O、S分别为单位矩阵、随机矩阵、零矩阵和对角阵,试通过数值计算验证。解: M文件如下;由ans,所以2. 产生5阶希尔伯特矩阵H和5阶帕斯卡矩阵P,且求其行列式的值Hh和Hp以及它们的条件数Th和Tp,判断哪个矩阵性能更好。为什么?解:M文件如下:因为它们的条件数Th>>Tp,所以pascal矩阵性能更好。3. 建立一个5×5矩阵,求它的行列式值、迹、秩和范数。解: M文件如下:4. 已知求A的特征值及特征向量,并分析其数学意义。解:M文件如图:数学意义:V的3个列向量是A的特征向量,D的主对角线上3个是A的特征值,特别的,V的3个列向量分别是D的3个特征值的特征向量。5. 下面是一个线性方程组:(1) 求方程的解。(2) 将方程右边向量元素b3改为0.53再求解,并比较b3的变化和解的相对变化。(3) 计算系数矩阵A的条件数并分析结论。解: M文件如下:输出结果:由结果,X和X2的值一样,这表示b的微小变化对方程解也影响较小,而A的条件数算得较小,所以数值稳定性较好,A是较好的矩阵。6. 建立A矩阵,试比较sqrtm(A)和sqrt(A),分析它们的区别。解:M文件如下:分析结果知:sqrtm(A)是类似A的数值平方根(这可由b1*b1=A的结果看出),而sqrt(A)则是对A中的每个元素开根号,两则区别就在于此。实验三 选择结构程序设计1. 求分段函数的值。用if语句实现,分别输出x=-5.0,-3.0,1.0,2.0,2.5,3.0,5.0时的y值。解:M文件如下:2. 输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。其中90分100分为A,80分89分为B,79分79分为C,60分69分为D,60分以下为E。要求:(1) 分别用if语句和switch语句实现。(2) 输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。解:M文件如下试算结果:score=88grade =Bscore=123错误:输入的成绩不是百分制成绩3. 硅谷公司员工的工资计算方法如下:(1) 工作时数超过120小时者,超过部分加发15%。(2) 工作时数低于60小时者,扣发700元。(3) 其余按每小时84元计发。试编程按输入的工号和该号员工的工时数,计算应发工资。解:M文件下4. 设计程序,完成两位数的加、减、乘、除四则运算,即产生两个两位随机整数,再输入一个运算符号,做相应的运算,并显示相应的结果。解:M文件如下;5. 建立5×6矩阵,要求输出矩阵第n行元素。当n值超过矩阵的行数时,自动转为输出矩阵最后一行元素,并给出出错信息。解:M文件如下:实验四 循环结构程序设计1. 根据,求的近似值。当n分别取100、1000、10000时,结果是多少?要求:分别用循环结构和向量运算(使用sum函数)来实现。解:M文件如下:2. 根据,求:(1) y<3时的最大n值。(2) 与(1)的n值对应的y值。解:M文件如下:3. 考虑以下迭代公式:其中a、b为正的学数。(1) 编写程序求迭代的结果,迭代的终止条件为|xn+1-xn|10-5,迭代初值x0=1.0,迭代次数不超过500次。(2) 如果迭代过程收敛于r,那么r的准确值是,当(a,b)的值取(1,1)、(8,3)、(10,0.1)时,分别对迭代结果和准确值进行比较。解:M文件如下:4. 已知求f1f100中:(1) 最大值、最小值、各数之和。(2) 正数、零、负数的个数。解:M文件以下是运算结果:max(f)=437763282635min(f)=-899412113528sum(f)=-742745601951c1=49c2=2c3=495. 若两个连续自然数的乘积减1是素数,则称这两个边疆自然数是亲密数对,该素数是亲密素数。例如,2×3-1=5,由于5是素数,所以2和3是亲密数,5是亲密素数。求2,50区间内:(1) 亲密数对的对数。(2) 与上述亲密数对对应的所有亲密素数之和。解:M文件:运算结果为:j = 29s = 23615实验五 函数文件一、实验目的1. 理解函数文件的概念。2. 掌握定义和调用MATLAB函数的方法。二、实验内容1. 定义一个函数文件,求给定复数的指数、对数、正弦和余弦,并在命令文件中调用该函数文件。解:M文件如下:函数fushu.M文件:function e,l,s,c = fushu(z)%fushu 复数的指数,对数,正弦,余弦的计算%e 复数的指数函数值%l 复数的对数函数值%s 复数的正弦函数值%c 复数的余弦函数值e=exp(z);l=log(z);s=sin(z);c=cos(z);命令文件M:z=input('请输入一个复数z=');a,b,c,d=fushu(z)运算结果如下:z=input('请输入一个复数z=');a,b,c,d=fushu(z)请输入一个复数z=1+ia = 1.4687 + 2.2874ib = 0.3466 + 0.7854c 1.2985 + 0.6350id = 0.8337 - 0.9889i2. 一物理系统可用下列方程组来表示:从键盘输入m1、m2和的值,求a1、a2、N1和N2的值。其中g取9.8,输入时以角度为单位。要求:定义一个求解线性方程组AX=B的函数文件,然后在命令文件中调用该函数文件。解: M文件函数fc.M文件:function X= fc(A,B)%fc fc是求解线性方程的函数%A A是未知矩阵的系数矩阵X=AB; 命令M文件:clc;m1=input('输入m1=');m2=input('输入m2=');theta=input('输入theta=');x=theta*pi/180;g=9.8;A=m1*cos(x) -m1 -sin(x) 0 m1*sin(x) 0 cos(x) 0 0 m2 -sin(x) 0 0 0 -cos(x) 1;B=0;m1*g;0;m2*g;X=fc(A,B) 运算结果:输入m1=1输入m2=1输入theta=30X = 7.8400 3.3948 6.7896 15.6800 3. 一个自然数是素数,且它的数字位置经过任意对换后仍为素数。例如13是绝对素数。试求所有两位绝对素数。要求:定义一个判断素数的函数文件。解:M文件:函数prime.m文件function p = prime(p)% 输入p的范围,找出其中的素数m=p(length(p);for i=2:sqrt(m) n=find(rem(p,i)=0&p=i); p(n)=; %将p中能被i整除,而却不等于i的元素,即下标为n的元素剔除,其余的即为素数endp;命令文件:clc;p=10:99;p=prime(p); %找出10到99内的所有素数p=10*rem(p,10)+(p-rem(p,10)/10; %将p素数矩阵每个元素个位十位调换顺序p=prime(p) %再对对换后的素数矩阵找出所有的素数运算结果:p = 11 31 71 13 73 17 37 97 794. 设,编写一个MATLAB函数文件fx.m,使得调用f(x)时,x可用矩阵代入,得出的f(x)为同阶矩阵。解:函数fx.m文件:function f= fx(x)%fx fx求算x矩阵下的f(x)的函数值A=0.1+(x-2).2;B=0.01+(x-3).4;f=1./A+1./B;命令文件:clc;x=input('输入矩阵x=');f=fx(x)运算结果:>> x=input('输入矩阵x=');f=fx(x)输入矩阵x=7 2;12 5f = 0.0437 10.9901 0.0101 0.17245. 已知(1) 当f(n)=n+10ln(n2+5)时,求y的值。(2) 当f(n)=1×2+2×3+3×4+.+n×(n+1)时,求y的值。解:(1)函数f.m文件:function f=f(x)f=x+10*log(x2+5);命令文件:clc;n1=input('n1=');n2=input('n2=');n3=input('n3=');y1=f(n1);y2=f(n2);y3=f(n3);y=y1/(y2+y3)运算结果如下:n1=40n2=30n3=20y = 0.6390(2).函数g.m文件function s= g(n)for i=1:ng(i)=i*(i+1);ends=sum(g);命令文件:clc;n1=input('n1=');n2=input('n2=');n3=input('n3=');y1=g(n1);y2=g(n2);y3=g(n3);y=y1/(y2+y3)运算结果如下:n1=40n2=30n3=20y = 1.7662实验六 高层绘图操作一、实验目的1. 掌握绘制二维图形的常用函数。2. 掌握绘制三维图形的常用函数。3. 掌握绘制图形的辅助操作。二、实验内容1. 设,在x=02区间取101点,绘制函数的曲线。解:M文件如下:clc;x=linspace(0,2*pi,101);y=(0.5+3*sin(x)./(1+x.2);plot(x,y)运行结果有:2. 已知y1=x2,y2=cos(2x),y3=y1×y2,完成下列操作:(1) 在同一坐标系下用不同的颜色和线型绘制三条曲线。(2) 以子图形式绘制三条曲线。(3) 分别用条形图、阶梯图、杆图和填充图绘制三条曲线。解:(1) M文件:clc;x=-pi:pi/100:pi;y1=x.2;y2=cos(2*x);y3=y1.*y2;plot(x,y1,'b-',x,y2,'r:',x,y3,'k-')运行结果:(2)M文件:clc;x=-pi:pi/100:pi;y1=x.2;y2=cos(2*x);y3=y1.*y2;subplot(1,3,1);plot(x,y1,'b-');title('y1=x2');subplot(1,3,2);plot(x,y2,'r:');title('y2=cos(2x)');subplot(1,3,3);plot(x,y3,'k-');title('y3=y1*y2');.运行结果:(3)M文件:clc;x=-pi:pi/100:pi;y1=x.2;y2=cos(2*x);y3=y1.*y2;subplot(2,2,1);plot(x,y1,'b-',x,y2,'r:',x,y3,'k-');subplot(2,2,2);bar(x,y1,'b');title('y1=x2');subplot(2,2,3);bar(x,y2,'r'); title('y2=cos(2x)');subplot(2,2,4);bar(x,y3,'k');title('y3=y1*y2');由上面的M文件,只要依次将“bar”改为“stairs”、“stem”、“fill”,再适当更改区间取的点数,运行程序即可,即有下面的结果:3. 已知在-5x5区间绘制函数曲线。解:M文件:clc;x=-5:0.01:5;y=(x+sqrt(pi)/(exp(2).*(x<=0)+0.5*log(x+sqrt(1+x.2).*(x>0);plot(x,y)运行结果:由图可看出,函数在零点不连续。4. 绘制极坐标曲线=asin(b+n),并分析参数a、b、n对曲线形状的影响。解:M文件如下:clc;theta=0:pi/100:2*pi;a=input('输入a=');b=input('输入b=');n=input('输入n=');rho=a*sin(b+n*theta);polar(theta,rho,'m')采用控制变量法的办法,固定两个参数,变动第三个参数观察输出图象的变化。分析结果:由这8个图知道, 当a,n固定时,图形的形状也就固定了,b只影响图形的旋转的角度;当a,b固定时,n只影响图形的扇形数,特别地,当n是奇数时,扇叶数就是n,当是偶数时,扇叶数则是2n个;当b,n固定时,a影响的是图形大小,特别地,当a是整数时,图形半径大小就是a。5. 绘制函数的曲线图和等高线。其中x的21个值均匀分布-5,5范围,y的31个值均匀分布在0,10,要求使用subplot(2,1,1)和subplot(2,1,2)将产生的曲面图和等高线图画在同一个窗口上。解:M文件:clc;x=linspace(-5,5,21);y=linspace(0,10,31);x,y=meshgrid(x,y);z=cos(x).*cos(y).*exp(-sqrt(x.2+y.2)/4);subplot(2,1,1);surf(x,y,z);title('曲面图');subplot(2,1,2);surfc(x,y,z);title('等高线图');运行结果:6. 绘制曲面图形,并进行插值着色处理。解:M文件:clc;s=0:pi/100:pi/2;t=0:pi/100:3*pi/2;s,t=meshgrid(s,t);x=cos(s).*cos(t);y=cos(s).*sin(t);z=sin(s);subplot(2,2,1);mesh(x,y,z);title('未着色的图形');subplot(2,2,2);surf(x,y,z);title('shading faceted(缺省)');subplot(2,2,3);surf(x,y,z);shading flat;title('shading flat');subplot(2,2,4);surf(x,y,z);shading interp; %插值着色title('shading interp'); 运行结果有:实验八 数据处理与多项式计算二、实验内容1. 利用MATLAB提供的rand函数生成30000个符合均匀分布的随机数,然后检验随机数的性质:(1) 均值和标准方差。(2) 最大元素和最小元素。(3) 大于0.5的随机数个数占总数的百分比。解:M文件:clc;x=rand(1,30000);mu=mean(x) %求这30000个均匀分布随机数的平均值sig=std(x) %求其标准差1y=length(find(x>0.5); %找出大于0.5数的个数p=y/30000 %大于0.5的所占百分比运行结果:mu = 0.499488553231043sig = 0.288599933559786p = 0.4994000000000002. 将100个学生5门功课的成绩存入矩阵P中,进行如下处理:(1) 分别求每门课的最高分、最低分及相应学生序号。(2) 分别求每门课的平均分和标准方差。(3) 5门课总分的最高分、最低分及相应学生序号。(4) 将5门课总分按从大到小顺序存入zcj中,相应学生序号存入xsxh。提示:上机调试时,为避免输入学生成绩的麻烦,可用取值范围在45,95之间的随机矩阵来表示学生成绩。解:M文件:clc;t=45+50*rand(100,5);P=fix(t); %生成100个学生5门功课成绩x,l=max(P) %x为每门课最高分行向量,l为相应学生序号y,k=min(P)%y为每门课最低分行向列,k为相应学生序号mu=mean(P) %每门课的平均值行向量sig=std(P) %每门课的标准差行向量s=sum(P,2) %5门课总分的列向量X,m=max(s)%5门课总分的最高分X与相应学生序号mY,n=min(s)%5门课总分的最低分Y与相应学生序号nzcj,xsxh=sort(s) %zcj为5门课总分从大到小排序,相应学生序号xsxh 运行结果:3. 某气象观测得某日6:0018:00之间每隔2h的室内外温度(0C)如实验表1所示。实验表1 室内外温度观测结果(0C)时间h 6 8 10 12 14 16 18室内温度t1 18.0 20.0 22.0 25.0 30.0 28.0 24.0室外温度t2 15.0 19.0 24.0 28.0 34.0 32.0 30.0试用三次样条插值分别求出该日室内外6:3018:30之间每隔2h各点的近似温度(0C)。解:M文件:clc;h=6:2:18;t1=18.0 20.0 22.0 25.0 30.0 28.0 24.0;t2=15.0 19.0 24.0 28.0 34.0 32.0 30.0;T1=interp1(h,t1,'spline')%室内的3次样条插值温度T2=interp1(h,t2,'spline')%室外的3次样条插值温度 运行结果:T1 = Columns 1 through 3 40.000000000000703 44.000000000001130 48.000000000001705 Columns 4 through 6 54.000000000002885 64.000000000005883 60.000000000004512 Column 7 52.000000000002444T2 = Columns 1 through 3 34.000000000000284 42.000000000000902 52.000000000002444 Columns 4 through 6 60.000000000004512 72.000000000009408 68.000000000007503 Column 7 64.000000000005883 4. 已知lgx在1,101区间10个整数采样点的函数值如实验表2所示。实验表2 lgx在10个采样点的函数值x 1 11 21 31 41 51 61 71 81 91 101lgx 0 1.0414 1.3222 1.4914 1.6128 1.7076 1.7853 1.8513 1.9085 1.9510 2.0043试求lgx的5次拟合多项式p(x),并绘制出lgx和p(x)在1,101区间的函数曲线。解:M文件:x=1:10:101;y=lg10(x);P=polyfit(x,y,5)y1=polyval(P,x);plot(x,y,':o',x,y1,'-*') 运行结果:Warning: Polynomial is badly conditioned. Add points with distinct X values, reduce the degree of the polynomial, or try centering and scaling as described in HELP POLYFIT. > In polyfit at 80P = 0.0000 -0.0000 0.0001 -0.0058 0.1537 -0.1326(这里出现警告是提示不必用5价函数就已经可以完美拟合了,是可以降价拟合。)在1,101的区间函数图像5. 有3个多项式P1(x)=x4+2x3+4x2+5,P2(x)=x+2,P3(x)=x2+2x+3,试进行下列操作:(1) 求P(x)=P1(x)+P2(x)P3(x)。(2) 求P(x)的根。(3) 当x取矩阵A的每一元素时,求P(x)的值。其中 :(4) 当以矩阵A为自变量时,求P(x)的值。其中A的值与第(3)题相同。 解:M文件:clc;clear;p1=1,2,4,0,5;p2=1,2;p3=1,2,3;p2=0,0,0,p2;p3=0,0,p3;p4=conv(p2,p3); %p4是p2与p3的乘积后的多项式 np4=length(p4); np1=length(p1);p=zeros(1,np4-np1) p1+p4 %求p(x)=p1(x)+p2(x)x=roots(p) %求p(x)的根A=-1 1.2 -1.4;0.75 2 3.5;0 5 2.5;y=polyval(p,A) %x取矩阵A的每一元素时的p(x)值 运行结果:p = 0 0 0 0 1 3 8 7 11x = -1.3840 + 1.8317i -1.3840 - 1.8317i -0.1160 + 1.4400i -0.1160 - 1.4400iy = 1.0e+003 * 0.0100 0.0382 0.0125 0.0223 0.0970 0.4122 0.0110 1.2460 0.1644-

    注意事项

    本文(MATLAB程序设计及应用(第二版)课后实验答案.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开