二项式定理学案.doc
Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date二项式定理学案1131二项式定理(1)(一)教学目标1、知识与技能: 掌握二项式定理和二项展开式的通项公式,并能用它们解决与二项展开式有关的简单问题。2、过程与方法:通过学生熟悉的多项式的乘法引入,让学生归纳猜想出二项式定理,发挥例题的示范作用使学生能用它们解决与二项展开式有关的简单问题。3、情态与价值:培养归纳猜想,抽象概括,演绎证明等理性思维能力(二)教学重、难点重点:二项式定理和二项展开式的通项公式。难点:二项式定理和二项展开式的通项公式。(三)教学设想、问题情境1. 在n=1,2,3,4时,研究(a+b)n的展开式.(a+b)1= ,(a+b)2= ,(a+b)3= ,(a+b)4= .构建数学(a+b) = 这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b)的 ,其中(r=0,1,2,n)叫做 , 叫做二项展开式的通项,它是展开式的第 项,展开式共有 个项.数学应用 例1用二项式定理展开:(1); (2)例2求(1+2x)7的展开式中第4项的二项式系数和系数例3求(x-的二项展开式中的常数项。练习:1. 求(2a+3b)6的展开式的第3项.2. 求(3b+2a)6的展开式的第3项. 3.写出的 展开式的第r+1项.4选择题(1)的展开式中,第五项是( ) A. B. C. D.(2)的展开式中,不含a的项是第( )项 A.7 B.8 C.9 D.6(3)(x-2)9的展开式中,第6项的二项式系数是( ) A.4032 B.-4032 C.126 D.-126(4)若的展开式中的第三项系数等于6,则n等于( ) A.4 B.4或-3 C.12 D.3(5)多项式(1-2x)5(2+x)含x3项的系数是( ) A.120 B.-120 C.100 D.-1005.求(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中x2的系数.6.求二项式的展开式中的有理项.7.二项式的展开式中第三项系数比第二项系数大44,求第4项的系数.8. 已知的展开式的前三项系数的和为129,问这个展开式中是否存在常数项?是否存在有理项?如有,求出这些项;没有,说明理由。9. 展开式中第9项是常数项,则n的值是 ( ) A.13 B.12 C.11 D.1010.的展开式中的整数项是( ) A.第12项 B. 第13项 C. 第14项 D. 第15项11. 在(x2+3x+2)5的展开式中,x的系数为( ) A.160 B.240 C.360 D.800二项式系数的性质写出(a+b)n的展开式的二项式系数1时为112时为1213时为13314时为146415时为151010516时为1615201561二项式系数的特点:(二项式系数的性质)(1)对称性 与首末两端“等距离”的两个二项式系数相等,这一性质可直接由公式 得到(2)增减性与最大值 ,时二项式系数是逐渐增大的,由对称性可知它的后半部分是逐渐减小的,且中间项取得最大值。 因此,当n为偶数时,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且最大。(3)各二项式系数的和 在中令得.(4)在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和例1、用二项式定理证明:9910-1能被1000整除例2、设,求下列各式的值。(1);(2); (3);(4) ;(5) .例3、 已知展开式的各项二项系数和等于1024,(1)求展开式中含的项。(2)求展开式中二项式系数最大的项。-