湖南省常德市第一中学2016-2017学年高二上学期期中考试数学(理)试题Word版含答案.doc
【精品文档】如有侵权,请联系网站删除,仅供学习与交流湖南省常德市第一中学2016-2017学年高二上学期期中考试数学(理)试题Word版含答案.doc.精品文档.常德市一中2016年下学期高二年级期中考试数学试题卷(理科)(时量:120分钟 满分:150分)、选择题(本题包括12个小题,每小题5分,共60分)1.方程所表示的曲线是( )A.圆的一部分B.椭圆的一部分 C.双曲线的一部分D.抛物线的一部分2.设为空间的一个基底,若P,A,B,C四点共面,则x的值为( )A -1B.1C. 3D.53.考察以下列命题:命题“若,则x=l ”的否命题为“若 ,则”若,则是函数的极值点.命题,使得 sinx>l;则,均有“ x > 2 ”是“ < ”的充分不必要条件,则真命题的个数为( ) A. 0 B. 1 C. 2D.34.若双曲线的离心率为,则其渐近线的斜率为( )A. 土 B. 士 C. ± D. ±5.函数在在0,4上的最大值为( )A. B. C. D.6.在平面直角坐标系中,己知点M (2,0),点B为直线上的动点,点Q在线段MB的垂直平分线上,且AB丄,则动点A的轨迹方程是( )A. B. C. D. 7.已知是R上的增函数,则实数a的取值范围是( )A. a 1 B. a C. a-l D. a-18.已知点O为空间直角坐标系的原点, =(1,2,3), =(2,1,2), =(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为( )A. B. C. D. 9.若关于x的方程在有两个不同实根,则实数m的取值范围是( )A. 0, ) B. (0,) C. 0,1) D. (0,1)10.设、是定义域为R的恒大于零的可导函数,且,当axb时有( ) A.> B.>C.> g(x) D.>11.已知抛物线C: (p > 0)的焦点F到准线的距离为4,斜率为正的直线过点F且与抛物线C交A,B两点,若,则直线的斜率为( )A. B. C. D.12.已知函数, 0abc,且. . 0,若实数是方程的一个根,则不可能成立的是( )A. a B. b C. c D. c二、填空题(本题包括4个小题,每空5分,共20分)13.设平面的法向量为(1, 2, -2),平面的法向量为(一2, -4, k),若/,则k= . 14.在函数图象上点A (2, )处的切线斜率为 .15.设p:方程表示双曲线;q:函数在R上有极大值点和极小值点各一个,则使“P且q”为真命题的实数m的取值范围是 .16.如图,等腰梯形ABCD中,ABCD且AB = 2,AD =1, DC = 2x.以A, B为焦点,且过点D)的双曲线的离心率为el:以C,D为焦点,且过点A的椭圆的离心率为e2,若 (0,l),,则实数m的取值范围为 .三、解答题(本题包括6个小题,共70分)17.(本题共10分)如图,平行六面体ABCD-A1B1C1D1的底面ABCD是正方形,且C1CB=C1CD= 4,AA1=2AB=4.若设试用基底表示;(2)若E是AA1中点,求C1E的长。18.(本小题满分12分)已知抛物线C1的准线为.(1)求抛物线C1的标准方程及焦点坐标;(2)若曲线C2: ,直线 与C1,C2都相切,求直线的方程.19.(本小题满分 12 分)直三棱柱ABC-A1B1C1中AA1 = AB = AC=1, E, F分别是CC1、BC的中点,AE丄A1B1,D为棱A1B1上的点.(1)证明:平面AA1B1B丄平面AA1C1C(2)试判断直线DF、AE所成的角是否为定值?若是,求出这个定值,若不是,试说明理由.(3)若平面DEF与平面/ABC所成锐二面角的余弦值为,试求A1D的长.20.(本小题满分12分)要做一个面积为V的圆柱形锅炉,已知两个底面的材料每单位面积的价格为 20元,侧面的材料每单位面积的价格为15元.(1)设底面半径为r,锅炉造价为y,试将y表示为r的函数;(2)求锅炉的底面半径与高的比是多少时造价最低?21.(本小题满分12分)若0为坐标原点,椭圆C1: (a>b>0)的左、右焦点分别为F1,F2,离心率为el:双曲线C2: 的左、右焦点分别为F3,F4,离心率为e2.已知,且(1)求C1、C2的的方程;()过F1作C1不垂直于y轴的弦AB,M为AB的中点,当直线0M与C2交于P, Q两点时,求四边形APBQ面积的最小值.22.(本小题满分12分)已知函数,其中a为实数.(1)令,求函数的单调增区间;(2)若对定义域内的所有,函数的图象都不在的图象的下方,求实数a的取值范围;(3)对任意的正整数s、t ,试比较代数式与的大小关系并证明.