欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    盘点动点轨迹问题的基本图形.doc

    • 资源ID:24045956       资源大小:691.50KB        全文页数:5页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    盘点动点轨迹问题的基本图形.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流盘点动点轨迹问题的基本图形.精品文档.盘点动点轨迹问题的基本图形 动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。本文就动点轨迹问题的基本图形作一详述, 动点轨迹基本类型为直线型和圆弧型.归纳一下,动点轨迹为直线型的有:平面内到定直线的距离等于定长的点的轨迹是直线(线段);平面内与定直线的夹角为定角的点的轨迹是直线(线段).动点轨迹是圆弧型的有:平面内到一定点的距离为定长的点的轨迹是圆(圆弧);平面内与两定点的张角是定角的点的轨迹是圆 一、直线型类型一 例1 如图1,已知半圆的半径为2,初始位置与直线相切于点,直径与直线平行,将半圆在直线上无滑动地滚动至直径与直线垂直,求圆心在此过程中形成的轨迹的长.简解 在滚动过程中与直线相切,圆心与直线的距离为半径长2,圆心的轨迹是一线段,长度为圆弧长,即弧长. 小结 此例因动点到定直线的距离为定长,所以基本图形为直线型类型一.这是动点轨迹入门级题目. 例2 如图2,已知线段,为线段上一动点,分别以、为边在线段的同侧作等边和等边,连结,取得中点,在点从点到点运动的过程中,求点运动路径的长. 简解 过点作于点,过点作于点; 过点作于点,则.则四边形是梯形,且是中位线,(定值).点运动路径是上侧与平行的一条线段. 通过点分别与点、点重合,运用极端法可知点运动路径是以为边的等边三角形的中位线,点轨迹的长度为. 小结 此例因动点到定直线的距离为定长,所以基本图形为直线型类型一因动点较多,需抓住主动点对从动点的制约作用以确定动点的轨迹,继而运用极端法求得轨迹的长度. 二、直线型类型二 例3 如图3,已知是边长为6的等边三角形,角平分线交于点,是直线上一动点,连结,以为边向下作等边三角形,连结,求长度的最小值. 简解 连结,过点作于点.又,即点的轨迹为过点且与成30°角的直线. 当时的垂线段即为所求的长度的最小, 在中求得. 小结 此例因动点与定直线的夹角为定角,所以基本图形为直线型类型二.须知当动点轨迹为直线时,定点与动点连线的最短距离为垂线段的长度. 例4 如图4,已知中点是边所在直线上一动点,连结,以为斜边作等腰直角,点为边上一定点且,连结,求长度的最小值. 简解 过点作直线的垂线,交延长线于点,过点作于点.易证得, 连结,则 即点的轨迹为过点且与成45°角的直线, 当时的的长度即为所求最小值,即. 小结 此例因动点与定直线的夹角为定角,所以基本图形为直线型类型二.须知图形中有等腰直角三角形存在时可运用构造全等三角形转移等量这一基本方法. 三、圆弧形类型一例5 如图5,已知正方形的边长为4,、分别是边、上的动点,且,是的中点,求的最小值.简解 连结.(定值),在以为圆心为半径的圆上,当三点共线时取最小值, 即最小值为. 小结 此例因动点与定点的距离为定长,所以基本图形为圆弧型类型一.须知圆外一点与圆上动点的最大距离为,最小距离为. 例6 如图6,正六边形的边长为2,两顶点分别在轴和轴上运动.求顶点到原点的距离的最大值和最小值.简解 取中点,连结,.(定值), 点是在以为圆心,为半径的圆上.又由,求得(定值), 当三点共线且在线段上时,取最大值; 当三点共线且在线段延长线上时,取最小值. 小结 此例因动点与定点的距离为定长,所以基本图形为圆弧型类型一.须知两定长线段在共线时可求得折线最大长度为,最小值为. 四、圆弧型类型二例7 如图,、是正方形的边上的两个动点,且满足,连结交于点,连结交于点.若正方形的边长为2,求线段长度的最小值.简解 易证得,又, 即(定角), 点在以的中点(设为)为圆心,为半径的圆(四分之一圆弧)上. 连结,交于点, 当点运动到点时,取得最小值. 小结 此例因动点与两定点、的张角为定角,所以基本图形为圆弧型类型二.由例5的方法可求得圆外一点与圆上动点的最小距离. 例8 如图8,以为圆心,半径为2的圆与轴交于、两点,与轴交于、两点,点为上一动点,于点,求当点从点出发顺时针运动到点时,点所经过的路径长.简解 (定角),点在以的中点(设为)为圆心,为半径的圆上. 当点在点时,点在点; 当点在点时,点在点, 点所经过的路径为弧.在中,弧长.小结 此例因动点与两定点、的张角为定角,所以基本图形为圆弧型类型二.由例2的极端法确定圆弧的起点和终点,从而求得路径圆弧长. 结束语构建基本图形形成解决问题的思维模式是初中几何教学的重要方法.本文就动点轨迹的基本图形作了比较系统的分类,为学生解决此类问题提供了一个可行的途径.但在实际教学中要注意防止过于固化而禁锢学生的思维,阻碍学生创造性思维、发散性思维的形成.

    注意事项

    本文(盘点动点轨迹问题的基本图形.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开