欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学数学应用题分类解题大全(整理).doc

    • 资源ID:24084806       资源大小:210.50KB        全文页数:135页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学数学应用题分类解题大全(整理).doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date小学数学应用题分类解题大全(整理)小学数学应用题分类解题大全(整理)小学数学应用题分类解题大全求平均数应用题是在“把一个数平均分成几份,求一份是多少”的简单应用题的基础上发展而成的。它的特征是已知几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等。最后所求的相等数,就叫做这几个数的平均数。解答这类问题的关键,在于确定“总数量”和与总数量相对应的“总份数”。计算方法:总数量÷总份数平均数 平均数×总份数总数量总数量÷平均数总份数例1:东方小学六年级同学分两个组修补图书。第一组28人,平均每人修补图书15本;第二组22人,一共修补图书280本。全班平均每人修补图书多少本?要求全班平均每人修补图书多少本,需要知道全班修补图书的总本数和全班的总人数。(15×28+280)÷(28+22)=14本例2:有水果糖5千克,每千克2.4元;奶糖4千克,每千克3.2元;软糖11千克,每千克4.2元。将这些糖混合成什锦糖。这种糖每千克多少元?要求什锦糖每千克多少元,要先出这几种糖的总价和总重量最后求得平均数,即每千克什锦糖的价钱。(2.4×5+3.2×4+4.2×11)÷(5+4+11)=3.55元例3、要挖一条长1455米的水渠,已经挖了3天,平均每天挖285米,余下的每天挖300米。这条水渠平均每天挖多少米?已知水渠的总长度,平均每天挖多少米,就要先求出一共挖了多少天。1455÷(3+(1455-285×3)÷300)=291米例4、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。外语成绩宣布后,他的平均分数下降了2分。小华外语成绩是多少分?解法一:先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。(902)×590×4=80分例5、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。甲乙丙三人平均每人存款多少元?要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。(2400÷2×1.5+2400)÷3=1400元例6、甲种酒每千克30元,乙种酒每千克24元。现在把甲种酒13千克与乙种酒8千克混合卖出,当剩余1千克时正好获得成本,每千克混合酒售价多少元?要求每千克混合酒售价多少元,要先求得两种酒的总价钱和两种酒的总千克数。因为当剩余1千克时正好获得成本,所以在总千克数中要减去1千克。(30×13+24×8)÷(13+81)=29.1元例7、甲乙丙三人各拿出相等的钱去买同样的图书。分配时,甲要22本,乙要23本,丙要30本。因此,丙还给甲13.5元,丙还要还给乙多少元?先求买来图书如果平均分,每人应得多少本,甲少得了多少本,从而求得每本图书多少元。1平均分,每人应得多少本? (22+23+30)÷3=25本2甲少得了多少本?2522=3本 3乙少得了多少本?2523=2本4每本图书多少元?13.5÷3=4.5元 5 丙应还给乙多少元? 4.5×2=9元13.5÷(22+23+30)÷322×(22+23+30)÷323=9元例8、小荣家住山南,小方家住山北。山南的山路长269米,山北的路长370米。小荣从家里出发去小方家,上坡时每分钟走16米,下坡时每分钟走24米。求小荣往返一次的平均速度。在同样的路程中,由于是下坡的不同,去时的上坡,返回时变成了下坡;去时的下坡,回来时成了上坡,因此,所用的时间也不同。要求往返一次的平均速度,需要先求得往返的总路程和总时间。1、往返的总路程 (260+370)×2=1260米2、往返的总时间 (260+370) ÷16+(260+370)÷24=65.625分3、往返平均速度 1260÷65.625=19.2米(260+370)×2÷(260+370) ÷16+(260+370)÷24=19.2米例9、草帽厂有两个草帽生产车间,上个月两个车间平均每人生产草帽185顶。已知第一车间有25人,平均每人生产203顶;第二车间平均每人生产草帽170顶,第二车间有多少人?解法一:可以用“移多补少获得平均数”的思路来思考。第一车间平均每人生产数比两个车间平均每人平均数多几顶?203185=18顶;第一车间有25人,共比按两车间平均生产数计算多多少顶?18×25=450。将这450顶补给第二车间,使得第二车间平均每人生产数达到两个车间的总平均数。6 第一车间平均每人生产数比两个车间平均顶数多几顶? 203185=18顶7第一车间共比按两车间平均数逆运算,多生产多少顶?18×25=450顶8 第二车间平均每人生产数比两个车间平均顶数少几顶?185170=15顶9 第二车间有多少人:450÷15=30人 (203185) ×25÷(185170) =30人例10、一辆汽车从甲地开往乙地,去时每小时行45千米,返回时每小时行60千米。往返一次共用了3.5小时。求往返的平均速度。(得数保留一位小数)解法一:要求往返的平均速度,要先求得往返的距离和往返的时间。去时每小时行45千米,1千米要 小时;返回时每小时行60千米,1千米要 小时。往返1千米要( + )小时,进而求得甲乙两地的距离。1、甲乙两地的距离 3.5÷( + )=90千米2、往返平均速度 90×2÷3.552.4千米 3.5÷( + )×2÷3.552.4千米解法二:把甲乙两地的距离看作“1”。往返距离为2个“1”,即1×2=2。去时每千米需 小时,返回时需 小时,最后求得往返的平均速度。1÷( + )51.4千米在解答某一类应用题时,先求出一份是多少(归一),然后再用这个单一量和题中的有关条件求出问题,这类应用题叫做归一应用题。归一,指的是解题思路。归一应用题的特点是先求出一份是多少。归一应用题有正归一应用题和反归一应用题。在求出一份是多少的基础上,再求出几份是多产,这类应用题叫做正归一应用题;在求出一份是多少的基础上,再求出有这样的几份,这类应用题叫做反归一应用题。根据“求一份是多少”的步骤的多少,归一应用题也可分为一次归一应用题,用一步就能求出“一份是多少”的归一应用题;两次归一应用题,用两步到处才能求出“一份是多少”的归一应用题。解答这类应用题的关键是求出一份的数量,它的计算方法:总数÷份数一份的数例1、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨?先求1辆卡车一次能运货物多少吨,再求增加6辆后,能运货物多少吨。这是一道正归一应用题。192÷24×(24+6)=240吨例2、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完?这是一道反归一应用题。例3、3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克?这是一道两次正归一应用题。例4、一个机械厂和4台机床4.5小时可以生产零件720个。照这样计算,再增加4台同样的机床生产1600个零件,需要多少小时?这是两次反归一应用题。要先求一台机床一小时可以生产零件多少个,再求需要多少小时。1600÷720÷4÷4.5×(4+4)=5小时例5、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工?先求每人每天的工作量,再求现在要修路多少米,然后求要5天完工需要工人多少人,最后求要增加多少人。(126+54)÷(126÷7÷6×5)7=5人例6、用两台水泵抽水。先用小水泵抽6小时,后用大水泵抽8小时,共抽水624立方米。已知小水泵5小时的抽水量等于大水泵2小时的抽水量。求大小水泵每小时各抽水多少立方米?解法一:根据“小水泵5小时的抽水量等于大水泵2小时的抽水量”,可以求出大水泵1小时的抽水量相当于小水泵几小时的抽水量。把不同的工作效率转化成某一种水泵的工作效率。1、 大水泵1小时的抽水量相当于小水泵几小时的抽水量?5÷2=2.5小时2、大水泵8小时的抽水量相当于小水泵几小时的抽水量2.5×8=20小时3、小水泵1小时能抽水多少立方米?642÷(6+20)=24立方米4、大水泵1小时能抽水多少立方米?24×2.5=60立方米解法二:1、 小水泵1小时的抽水量相当于大水泵几小时的抽水量2÷5=0.4小时2、 小水泵6小时的抽水量相当于大水泵几小时的抽水量04×6=2.4小时3、 大水泵1小时能抽水多少立方米?624÷(8+2.4)=60立方米4、 小水泵1小时能抽水多少立方米?60×0.4=24立方米例7、东方小学买了一批粉笔,原计划29个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够有校的班级用多少天?先求这批粉笔够一个班用多少天,剩下的粉笔够一个班用多少天,然后求够在校班用多少天。1、 这批粉笔够一个班用多少天 40×20=800天2、剩下的粉笔够一个班用多少天 80010×20=600天3、剩下几个班 2010=10个4、 剩下的粉笔够10个班用多少天 600÷10=60天(40×2010×20) ÷(2010) =60天例8、甲乙两个工人加工一批零件,甲4.5小时可加工18个,乙1.6小时可加工8个,两个人同时工作了27小时,只完成任务的一半,这批零件有多少个?先分别求甲乙各加工一个零件所需的时间,再求出工作了27小时,甲乙两工人各加工了零件多少个,然后求出一半任务的零件个数,最后求出这批零件的个数。27÷(4.5÷18)+27÷(1.6÷8)×2=486个在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。这类应用题叫做归总应用题。归总,指的是解题思路。归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份。例1、一个工程队修一条公路,原计划每天修450米。80天完成。现在要求提前20天完成,平均每天应修多少米?450×80÷(8020)=600米例2、家具厂生产一批小农具,原计划每天生产120件,28天完成任务;实际每天多生产了20件,可以几天完成任务?要求可以提前几天,先要求出实际生产了多少天。要求实际生产了多少天,要先求这批小农具一共有多少件。28120×28÷(120+20)=4天例3、装运一批粮食,原计划用每辆装24袋的汽车9辆,15次可以运完;现在改用每辆可装30袋的汽车6辆来运,几次可以运完?24×9×15÷30÷6=18次例4、修整一条水渠,原计划由8人修,每天工作7.5小时,6天完成任务,由于急需灌水,增加了2人,要求4天完成,每天要工作几小时?一个工人一小时的工作量,叫做一个“工时”。要求每天要工作几小时,先要求修整条水渠的工时总量。1、修整条水渠的总工时是多少?7.5×8×6=360工时2、参加修整条水渠的有多少人 8+2=10人3、要求 4天完成 ,每天要工作几小时4、360÷4÷10=9小时7.5×8×6÷4÷(8+2) =9小时例5、一项工程,预计30人15天可以完成任务。后来工作的天后,又增加3人。每人工作效率相同,这样可以提前几天完成任务?一个工人工作一天,叫做一个“工作日”。要求可以提前几天完成,先要求得这项工程的总工作量,即总工作日。1、这项工程的总工作量是多少?15×30=450工作日2、4天完成了多少个工作日?4×30=120工作日3、剩下多少个工作日?450120=330工作日4、剩下的要工作多少天?330÷(30+3)=10天5、可以提前几天完成?15(4+10)=1天15(15×304×30) ÷(30+3)+4=1天例6、 一个农场计划28天完成收割任务,由于每天多收割7公顷,结果18天就完成 了任务。实际每天收割多少公顷?要求实际每天收割多少公顷,要先求原计划每天收割多少公顷。要求原计划每天收割多少公顷,要先求18天多收割了多少公顷。18天多收割的就是原计划(2818)天的收割任务。1、 18天多收割了多少公顷? 7×18=126公顷2、原计划每天收割多少公顷? 126÷(2818)=12.6公顷3、实际每天收割多少公顷? 126+7=19.6公顷 7×18÷(2818) +7=19.6公顷例7、 休养准备了120人30天的粮食。5天后又新来30人。余下的粮食还够用多少天?先要求出准备的粮食1人能吃多少天,再求5天后还余下多少粮食,最后求还够用多少天。1、准备的粮食1人能吃多少天?300×120=3600天2、5天后还余下的粮食够1人吃多少天?36005×120=3000天3、现在有多少人?120+30=150人4、还够用多少天? 3000÷150=20天(300×1205×120) ÷(120+30) =20天例8、一项工程原计划8个人,每天工作6小时,10天可以完成。现在为了加快工程进度,增加22人,每天工作时间增加2小时,这样,可以提前几天完成这项工程?要求可以几天完成,要先求现在完成这项工程多少天。要求现在完成这项工程多少天,要先求这项工程的总工时数是多少。106×10×8÷(8+22)÷(6+2)=8天已知两个数以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做和倍应用题。解答方法是:和÷(倍数+1)1份的数 1份的数×倍数几倍的数例1、有甲乙两个仓库,共存放大米360吨,甲仓库的大米数是乙仓库的3倍。甲乙两个仓库各存放大米多少吨?例2、一个畜牧场有绵羊和山羊共148只,绵羊的只数比山羊只数的2倍多4只。两种羊各有多少只?山羊的只数:(148-4)÷(2+1)=48只 绵羊的只数:48×2+4=100只例3、一个饲养场养鸡和鸭共3559只,如果鸡减少60只,鸭增加100只,那么,鸡的只数比鸭的只数的2倍少1只。原来鸡和鸭各有多少只?鸡减少60只,鸭增加00只后,鸡和鸭的总数是3559-60+100=3599只,从而可求出现在鸭的只数,原来鸭的只数。1、现在鸡和鸭的总只数:3559-60+100=3599只2、现在鸭的只数:(3599-1)÷(2+1)=1200只3、原来鸭的只数:1200-100=1100只4、原来鸡的只数:3599-1100=2459只例4、甲乙丙三人共同生产零件1156个,甲生产的零件个数比乙生产的2倍还多15个;乙生产的零件个数比丙生产的2倍还多21个。甲乙丙三人各生产零件多少个?以丙生产的零件个数为标准(1份的数),乙生产的零件个数=丙生产的2倍-21个;甲生产的零件个数=丙的(2×2)倍+(21×2+15)个。丙生产零件多少个?(1156-21-21×2-15)÷(1+2+2×2)=154个乙:154×2+21=329个 甲:329×2+15=673个例5、甲瓶有酒精470毫升,乙瓶有酒精100毫升。甲瓶酒精倒入乙瓶多少毫升,才能使甲瓶酒精是乙瓶的2倍?要使甲瓶酒精是乙瓶的2倍,乙瓶 是1份,甲瓶是2份,要先求出一份是多少,再求还要倒入多少毫升。1、一份是多少?(470+100)÷(2+1)=190毫升2、还要倒入多少毫升?190-100=90毫升例6、甲乙两个数的和是7106,甲数的百位和十位上的数字都是8,乙数百位和十位上的数字都是2。用0代替这两个数里的这些8和2,那么,所得的甲数是乙数的5倍。原来甲乙两个数各是多少?把甲数中的两个数位上的8都用0代替,那么这个数就减少了880;把乙数中的两个数位上的2都用0代替,那么这个数就减少了220。这样,原来两个数的和就一共减少了(880+220)7106-(880+220)÷(5+1)+220=1221乙数7106-1221=5885甲数已知两个数的差以及它们之间的倍数关系,要求这两个数各是多少的应用题,叫做差倍应用题。解答方法是:差÷(倍数-1)1份的数 1份的数×倍数几倍的数例1、甲仓库的粮食比乙仓多144吨,甲仓库的粮食吨数是乙仓库的4倍,甲乙两仓各存有粮食多少吨?以乙仓的粮食存放量为标准(即1份数),那么,144吨就是乙仓的(4-1)份,从而求得一份是多少。114÷(4-1)=48吨乙仓例2、 参加科技小组的人数,今年比去年多41人,今年的人数比去年的3倍少35人。两年各有多少人参加?由“今年的人数比去年的3倍少35人”,可以把去年的参加人数作为标准,即一份的数。今年参加人数如果再多35人,今年的人数就是去年的3倍。(41+35)就是去年的(3-1)份去年:(41+35)÷(3-1)=38人例3、 师傅生产的零件的个数是徒弟的6倍,如果两人各再生产20个,那么师傅生产的零件个数是徒弟的4倍。两人原来各生产零件多少个?如果徒弟再生产20个,师傅再生产20×6=120个,那么,现在师傅生产的个数仍是徒弟的6倍。可见20×6-20=100个就是徒弟现有个数的6-2=4倍。(20×6-20)÷(6-4)-20=30个徒弟原来生产的个数30×6=180个师傅原来生产个数例4、 第一车队比第二车队的客车多128辆,再起从第一车队调出11辆客车到第二车队服务,这时,第一车队的客车比第二车队的3倍还多22辆。原来两车队各有客车多少辆?要求“原来两车队各有客车多少辆”,需要求“现在两车队各有客车多少辆”;要求“现在两车队各有客车多少辆”,要先求现在第一车队比第二车队的客车多多少辆。1、现在第一车队比第二车队的客车多多少辆? 128-11×2=106辆2、现在第二车队有客车多少辆? (106-22)÷(3-1)=42辆3、第二车队原有客车多少辆?42-11=31辆4、第一车队原有客车多少辆?31+128=159辆例5、 小华今年12岁,他父亲46岁,几年以后,父亲的年龄是儿子年龄的3倍?父亲的年龄与小华年龄的差不变。要先求当父亲的年龄是儿子年龄的3倍时小华多少岁,再求还要多少年。(46-12)÷(3-1)-12=5年例6、 甲仓存水泥64吨,乙仓存水泥114吨。甲仓每天存入8吨,乙仓每天存入18吨。几天后乙仓存放水泥吨数是甲仓的2倍?现在甲仓的2倍比乙仓多(64×2-114)吨,要使乙仓水泥吨数是甲仓的2倍,每天乙仓实际只多存入了(18-2×8)吨。(64×2-114)÷(18-2×8)=7天例7、 甲乙两根电线,甲电线长63米,乙电线长29米。两根电线剪去同样的长度,结果甲电线所剩下长度是乙电线的3倍。各剪去多少米?要求“各剪去多少米”,要先求得甲乙两根电线所剩长度各是多少米。两根电线的差不变,甲电线的长度是乙电线的3倍。从而可求得甲乙两根电线所剩下的长度。1、乙电线所剩的长度?(63-29)÷(3-1)=17米 2、剪去长度?29-17=12米例8、有甲乙两箱橘子。从甲箱取10只放入乙箱,两箱的只数相等;如果从乙箱取15只放入甲箱,甲箱橘子的只数是乙箱的3倍。甲乙两箱原来各有橘子多少只?要求“甲乙两箱原来各有橘子多少只”,先求甲乙两箱现在各有橘子多少只。已知现在“甲箱橘子的只数是乙箱的3倍”,要先求现在甲箱橘子比乙箱多多少只。原来甲箱比乙箱多10×2=20只,“从乙箱取15只放入甲箱”,又多了15×2=30只。现在两箱橘子相差(10×2+15×2)只。(10×2+15×2)÷(3-1)+15=40只乙箱 40+10×2=60只甲箱已知两个数的和与它们的差,要求这,叫做和差应用题。解答方法是:(和+差)÷2大数 (和-差)÷2小数 例1、 果园里有苹果树和梨树共308棵,苹果树比梨树多48棵。苹果树和梨树各有多少棵?例2、 甲乙两仓共存货物1630吨。如果从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨。甲乙两仓原来各有货物多少吨?从甲仓调出6吨放入乙仓,甲仓的货物比乙仓的货物还多10吨,可知原来两仓货物相差6×2+10=22吨,由此,可根据两仓货物的和与差,求得两仓原有货物的吨数。例3、 某公司甲班和乙班共有工作人员94人,因工作需要临时从乙班调46人到甲班工作,这时,乙班比甲班少12人,原来甲班和乙班各有工作人员多少人?总人数不变。即原来和现在两班工作人员的和都是94人。现在两班人数相差12人。要求原来甲班和乙班各有工作人员多少人,先要求现在甲班和乙班各有工作人员多少人?1、现在甲班有工作人员多少人?(94+12)÷2=53人2、现在乙班有工作人员多少人?(94-12)÷2=41人3、原来甲班有工作人员多少人?53-46=7人4、原来乙班有工作人员多少人?41+46=87人例4、 甲乙丙三人共装订同一种书刊508本。甲比乙多装订42本,乙比丙多装订26本。他们三人各装订多少本?先确定一个人的装订本数为标准。如果我们选定乙的装订本数为标准,从总数508中减去甲比乙多装订4的2本,加上丙比乙少装订的26本,得到的就是乙装订本数的3倍。由此,可求得乙装订的本数。乙:(508-42+26)÷3=164本 甲丙略例5、 三辆汽车共运砖9800块,第一辆汽车比其余两车运的总数少1400块,第二辆比第三辆汽车多运200块。三辆汽车各运砖多少块?根据“三辆汽车共运砖9800块”和“第一辆汽车比其余两车运的总数少1400块”,可求得第一辆汽车和其余两车各运砖多少块。根据“其余两车共运砖块数”和“第二辆比第三辆汽车多运200块”可求得第二辆和第三辆各运砖多少块。1、第一辆:(9800-1400)÷2=4200块2、第二辆和第三辆共运砖块数:9800-4200=5600块3、第二辆:(5600+200)÷2=2900块4、第三辆:5600-2900=2700块例6、 甲乙丙三人合做零件230个。已知甲乙两人做的总数比丙多38个;甲丙两人做的总数比乙多74个。三人各做零件多少个?先把跽两人做的零件总数看成一个数,从而求出丙做零件的个数,再把甲丙两人做的零件总数看作一个数,从而求出乙做零件的个数。丙:(230-38)÷2=96个 乙:(230-38)÷2=78个 甲略例7、 一列客车长280米,一列货车长200米,在平行的轨道上相向而行,两车从两车头相遇到两车尾相离共经过15秒;两列车在平行轨道上同向而行,货车在前,客车在后,从两车相遇(货车车尾和客车车头)到两车相离(货车车头和客车车尾)经过2分钟。两列车的速度各是多少?由相向而行从相遇到相离经过15秒,可求得两列车的速度和(280+200)÷15;由同向而行从相遇到相离经过2分钟,可求得两列车的速度差(280-200)÷(60×2)。从而求得两列车的速度。例8、 五年级三个班共有学生148人。如果把1班的3名学生调到2班,两班人数相等;如果把2班的1名学生调到3班,3班还比2班少3人。三个班原来各有学生多少人?由“如果把1班的3名学生调到2班,两班人数相等”,可知,1班学生人数比2班多3×2=6人;由“如果把2班的1名学生调到3班,3班还比2班少3人”可知,2班学生人数比3班多1×2+3=5人。如果确定以2班学生人数为标准,由“三个班共有学生148人”和“1班学生人数比2班多3×2=6人,2班学生人数比3班多1×2+3=5人”可先求得2班的学生人数。(148-3×2+1×2+3)÷3=49人2班甲丙班略已知两人的年龄,求他们之间的某种数量关系;或已知两人年龄之间的数量关系,求他们的年龄等,这类问题叫做年龄应用题问题。年龄问题的主要特点是:大小年龄差是个不变量。差是定值的两个量,随时间的变化,倍数关系也会发生变化。这类应用题往往是和差应用题、和倍应用题、差倍应用题的综合应用。 例1、小方今年11岁,他爸爸今年43岁,几年以后,爸爸的年龄是小方年龄的3倍?因为小方与爸爸的年龄差43-11=32不变。以几年后小方的年龄为1份数,爸爸的年龄就是3份的数。根据差倍应用题的解法,可求出小方几年后的年龄。(43-11)÷(3-1)=16岁 16-11=5年例2、妈妈今年比儿子大24岁,4年后妈妈年龄是儿子的5倍。今年儿子几岁?“妈妈今年比儿子大24岁“,4年后也同样大24岁,根据差倍应用题的解法,可求得4年后儿子的年龄,进而求得今年儿子的年龄。24÷(5-1)-4=2岁例3、今年甲乙两人年龄和为50岁,再过5年,甲的年龄是乙的4倍。今年甲乙两人各几岁?今年甲乙两人年龄和为50岁,再过5年,两人的年龄和是50+5×2=60岁。根据和倍应用题的解法 。可求得5年后乙的年龄,从而求得今年乙的年龄和甲的年龄。例4、小高5年前的年龄等于小王7年后的年龄。小高4年后与小王3年前的年龄和是35岁。今年两人各是多少岁?由“小高5年前的年龄等于小王7年后的年龄“可知,小高比小王大5+7岁;他们俩今年年龄的和为:35+3-4=30岁,根据和差应用题的解法,可求得今年两人各是多少岁。由第一个条件可知,小高比小王在5+712岁。由第二个条件可知,他们的年龄和为35+3-434岁。“根据两个差求未知数”是指分析问题的思考方法。“两个差”是指题目中有这样的数量关系。例如:总量之差与单位量之差;时间之差与速度之差或距离之差等等。解题时可以找出题目中的两个差,再根据两个这间的相应关系使总量得到解决。例1、百货商场上午卖出洗衣机8台,下午卖出同样的洗衣机12台,下午比上午多收售货款6600元,每台洗衣机售价多少元?6600÷(12-8)=1650元例2、一辆汽车上午行驶120千米,下午行驶210千米。下午比上午多行驶1.5小时。平均每小时行驶多少千米?(210-120)÷1.5=60千米例3、新建一个图书室和一个办公室。室内地面共有234平方米。已知办公室比图书室小54平方米。用同样的砖铺地,图书室比办公室多用864块。图书室和办公室地面各用砖多少块?由“办公室比图书室小54平方米”和“图书室比办公室多用864块”可求得“平均每平方米需用砖多少块”;由“室内地面共有234平方米”和“办公室比图书室小54平方米”,可求得“”。从而求得各用砖多少块。例4、甲乙两人同时从东村出发去西村,甲每分钟行76米,乙每分钟行68米。到达西村时,乙比甲多用了4分钟。东西两村间的路程是多少米?甲乙两人同时从东村出发,当甲到达西村时,乙距西村还有4分钟的路程。乙每分钟行68米,4分钟能行68×4=272米。也就是说,在相同的时间内,甲比乙多行272米。这是路程这差。每分钟甲比惭多行76-68=8米,这是速度这差。根据这两个差,可以求出甲走完全程所用的时间,从而求得两村之间的路程。76×68×4÷(76-68)=2584米例5、冰箱厂原计划每天生产电冰箱40台,改进工艺后,实际每天比原计划多生产5台这样,提前2天完成了这批生产任务外,还比原计划多生产了35台。实际生产电冰箱多少台?要求“实际生产电冰箱多少台”,需要知道“实际每天生产多少台”和“实际生产了多少天”。如果实际上再生产 2 天后话,还能生产(40+5)×2=90台,双知比原计划还多生产35台,实际上比原计划多生产了90+35=125台,这是一个总量之差。又知实际每天比原计划多生产5台,这是生产效率之差。根据这两个差可以求出原计划生产的天数。从而求得实际生产电冰箱的台数:40×(40+5)×2+35÷5+35=1035台例6、食品厂运来一批煤,原计划每天生产480千克,烧了预定的时间后,还剩下1680千克;改进烧煤方法后,实际每天烧400千克,烧了同样的时间后,还剩下4080千克。这批煤共有多少千克?要求这批煤共有多少千克,先要求出预定烧的天数。计划烧后还剩1680千克,实际烧后还剩4080千克可求得实际比坟墓多剩多少千克,这是剩下总量之差,实际每天烧400千克,计划每天烧480千克,可求得每天烧煤量之差。根据这两个差,可求得烧了多少天。进而可求得烧了多少千克,这批煤共有多少千克。400×(4080-1680)÷(480-400)+4080=16080千克有关栽树以及与栽树相似的一类应用题,叫做植树问题。植树问题通常有两种形式。一种是在不封闭的线路上植树,另一种是在封闭的线路上植树。1、不封闭线路上植树如果在一条不封闭的线路上可不可能,而且两端都植树,那么,植树的棵数比段数多。其数量关系如下:棵数总长÷株距+1 总长株距×(棵数-1) 株距总长÷(棵数-1)2、在封闭的线路上植树,那么植树的棵数与段数相等。其数量关系如下:棵数总长÷株距 总长株距×棵数 株距总长÷棵数例1、 有一条公路全长500米,从头至尾每隔5米种一棵松树。可种松树多少棵?500÷5 +1=101棵例2、 从校门口到街口,一共插有30面红旗,相邻两面红旗相隔6米。从校门口到街口长多少米? 6×(30-1)=174米例3、 在一条长150米的大路两旁各栽一行树,起点和终点都栽,一共栽了102棵。每相邻两棵树之间的距离相等。相邻两棵树之间的距离有多少米? 150÷(102÷2-1)=3米例4、 在一个周长为600米的池塘周围植树,每隔10米栽一棵杨树,在相邻两棵杨树之间每隔2米栽1棵柳树。杨树和柳树各栽了多少棵?根据“棵数=总长÷株距”,可以求出杨树的棵数在每两棵杨树之间可分为10÷2=5段,栽柳树4-1=4棵。由此,可以求得柳树的棵数。杨树:600÷10=60棵 柳树:(10÷2-1)×60=240棵例5、 一条马路一侧,原有木电线杆97根,每相邻的两根相距40米。现在计划全部换用大型水泥电线杆,每相邻两根相距60米。需要大型水泥电线杆多少根?1、这条路全长多少米?40×(97-1)=3840米2、需要大型水泥电线杆多少根?3840÷60+1=65根例6、 一座大桥长200米,计划在大桥两侧的栏杆上共安装32块图案,每块图案长2米,靠近桥两端的图案离桥端10.5米。相邻两图案之间的距离是多少米?在桥两侧共装32块图案,即每侧装16块,图案之间的间隔有16-1=15个。用总长减去16块图案的距离就可以知道15个间隔的长度。相向运动问题  同向运动问题(追及问题) 背向运动问题(相离问题)在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。也叫行程问题。行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离速度×时间 速度距离÷时间 时间距离÷速度按运动方向,行程问题可以分成三类:1、相向运动问题(相遇问题)2、同向运动问题(追及问题)3、背向运动问题(相离问题)十、行程应用题相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。两个运动物体由于相向运动而相遇。解答相遇问题的关键,是求出两个运动物体的速度之和。基本公式有:两地距离速度和×相遇时间 相遇时间两地距离÷速度和速度和两地距离÷相遇时间例1、 两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。已知客车每小时行80千米,货车每小时行多少千米?例2、 两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。求从出发到相遇经过几小时?因为乙在行进中耽误1小时。而甲没有停止,继续行进。也可以说,甲比乙多行1小时。如果从总路程中把甲单独行进的路程减去,余下的路程就是跽两人共同行进的。(138-13)÷(13+12)+1=6小时例3、 计划开凿一条长158米的隧道。甲乙两个工程队从山的两边同时动工,甲队每天挖2.5米,乙队每天挖进1.5米。35天后,甲队调往其他工地,剩下的由乙队单独开凿,还要多少天才能打通隧道?要求剩下的乙队开凿的天数,需要知道剩下的工作量和乙队每天的挖进速度。要求剩下的工作量,要先求两队的挖进速度的和,35天挖进的总米数,然后求得剩下的工作量。 158-(2.5+1.5)×35÷1.5=12天例4、 一列客车每小时行95千米,一列货车每小时的速度比客车慢14千米。两车分别从甲乙两城开出,1.5小时后两车相距46.5千米。甲乙两城之间的铁路长多少千米?已知1.5小时后两车还相距46.5千米,要求甲乙两城之间的铁路长,需要知道1.5小时两车行了多少千米?要求1.5小时两车共行了多少千米。需要知道两车的速度。(95-14+95)×1.5+46.5=310.5千米例5、 客车从甲地到乙地需8小时,货车从乙地到甲地需10小时,两车分别从甲乙两地同时相向开出。客车中途因故停开2小时后继续行驶,货车从出发到相遇共用多少小时?假设客车一出发即发生故障,且停开2小时后才出发,这时货车已行了全程的 ×2= ,剩下全程的1- = ,由两车共同行驶。 (1- ×2)÷( - )+2= 小时例6、 甲乙两地相距504千米,一辆货车和一辆客车分别从两地相对开出。货车每小时行72千米,客车每小时行56千米。如果要使两车在甲乙两地中间相遇,客车需要提前几小时出发?要求“如果要使两车在甲乙两地中间相遇,客车需要提前几小时出发”要先求出货车和客车行一半路程各需要多少小时。1、货车行至两地中间需要多少小时。504÷2÷72=3.5小时2、客车行至两地中间需要多少小时。504÷2÷56=4.5小时3、客车要提前几小时出发?4.5-3.5=1小时例7、 甲乙两人分别以均匀速度从东西两村同时相向而行,在离东村36千米处相遇。后继续前进,到达西村后及时返回,又在离东村54千米处相遇,东西两村相距多少千米?   36千米    54千米两人第一次相遇,合走了一个全程,第二次相遇,2合走了3个全程。两人合走了3个全程时,甲走了两个全程少54千米。(36×3+54)÷2=81千米例8、 甲从A地到B地需5小时,乙从B地到A地,速度是甲的 。现在甲乙两人分别从AB两地同时出发,相向而行,在途中相遇后继续前进。甲到B地后立即返回,乙到A地后也立即返回,他们在途中又一次相遇。两次相遇点相距72千米。AB两地相距多少千米?要求AB两地相距多少千米,关键是找出两次相遇点的距离占全程的几分之几1、甲每小时行全程的几分之几 1÷5=2、乙每小时行全程的几分之几 × =3、第一次相遇用了多少小时 1÷( + )=4、两人合行了2

    注意事项

    本文(小学数学应用题分类解题大全(整理).doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开