因动点产生的平行四边形问题(中考压轴题).doc
Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date因动点产生的平行四边形问题(中考压轴题)因动点产生的平行四边形问题因动点产生的平行四边形问题例 1 2012年福州市中考第21题如图1,在RtABC中,C90°,AC6,BC8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD/BC,交AB于点D,联结PQ点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t0)(1)直接用含t的代数式分别表示:QB_,PD_;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,PQ的中点M的运动路径是一条线段拖动右图中的点Q运动,可以体验到,当PQ/AB时,四边形PDBQ为菱形请打开超级画板文件名“12福州21”,拖动点Q向上运动,可以体验到,PQ的中点M的运动路径是一条线段点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ/AB时,四边形PDBQ为菱形点击动画按钮的中部,Q的速度变成1.思路点拨1菱形PDBQ必须符合两个条件,点P在ABC的平分线上,PQ/AB先求出点P运动的时间t,再根据PQ/AB,对应线段成比例求CQ的长,从而求出点Q的速度2探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径满分解答(1)QB82t,PD(2)如图3,作ABC的平分线交CA于P,过点P作PQ/AB交BC于Q,那么四边形PDBQ是菱形过点P作PEAB,垂足为E,那么BEBC8在RtABC中,AC6,BC8,所以AB10 图3在RtAPE中,所以当PQ/AB时,即解得所以点Q的运动速度为(3)以C为原点建立直角坐标系如图4,当t0时,PQ的中点就是AC的中点E(3,0)如图5,当t4时,PQ的中点就是PB的中点F(1,4)直线EF的解析式是y2x6如图6,PQ的中点M的坐标可以表示为(,t)经验证,点M(,t)在直线EF上所以PQ的中点M的运动路径长就是线段EF的长,EF图4 图5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t2时,PQ的中点为(2,2)设点M的运动路径的解析式为yax2bxc,代入E(3,0)、F(1,4)和(2,2),得 解得a0,b2,c6所以点M的运动路径的解析式为y2x6例 2 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4)以A为顶点的抛物线yax2bxc过点C动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动点P、Q的运动速度均为每秒1个单位,运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值图1动感体验请打开几何画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,ACG的面积最大观察右图,我们构造了和CEQ中心对称的FQE和ECH,可以体验到,线段EQ的垂直平分线可以经过点C和F,线段CE的垂直平分线可以经过点Q和H,因此以C、Q、E、H为顶点的菱形有2个请打开超级画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB的中点时,即t=2,ACG的面积取得最大值1观察CQ,EQ,EC的值,发现以C、Q、E、H为顶点的菱形有2个点击动画按钮的左部和中部,可得菱形的两种准确位置。思路点拨1把ACG分割成以GE为公共底边的两个三角形,高的和等于AD2用含有t的式子把图形中能够表示的线段和点的坐标都表示出来3构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在满分解答(1)A(1, 4)因为抛物线的顶点为A,设抛物线的解析式为ya(x1)24,代入点C(3, 0),可得a1所以抛物线的解析式为y(x1)24x22x3(2)因为PE/BC,所以因此所以点E的横坐标为将代入抛物线的解析式,y(x1)24所以点G的纵坐标为于是得到因此所以当t1时,ACG面积的最大值为1(3)或考点伸展第(3)题的解题思路是这样的:因为FE/QC,FEQC,所以四边形FECQ是平行四边形再构造点F关于PE轴对称的点H,那么四边形EHCQ也是平行四边形再根据FQCQ列关于t的方程,检验四边形FECQ是否为菱形,根据EQCQ列关于t的方程,检验四边形EHCQ是否为菱形,如图2,当FQCQ时,FQ2CQ2,因此整理,得解得,(舍去)如图3,当EQCQ时,EQ2CQ2,因此整理,得所以,(舍去)图2 图3例 3 2011年上海市中考第24题已知平面直角坐标系xOy(如图1),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MOMA二次函数yx2bxc的图象经过点A、M(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标图1动感体验请打开几何画板文件名“11上海24”,拖动点B在y轴上点A下方运动,四边形ABCD保持菱形的形状,可以体验到,菱形的顶点C有一次机会落在抛物线上思路点拨1本题最大的障碍是没有图形,准确画出两条直线是基本要求,抛物线可以不画出来,但是对抛物线的位置要心中有数2根据MOMA确定点M在OA的垂直平分线上,并且求得点M的坐标,是整个题目成败的一个决定性步骤3第(3)题求点C的坐标,先根据菱形的边长、直线的斜率,用待定字母m表示点C的坐标,再代入抛物线的解析式求待定的字母m满分解答(1)当x0时,所以点A的坐标为(0,3),OA3如图2,因为MOMA,所以点M在OA的垂直平分线上,点M的纵坐标为将代入,得x1所以点M的坐标为因此(2)因为抛物线yx2bxc经过A(0,3)、M,所以解得,所以二次函数的解析式为(3)如图3,设四边形ABCD为菱形,过点A作AECD,垂足为E在RtADE中,设AE4m,DE3m,那么AD5m因此点C的坐标可以表示为(4m,32m)将点C(4m,32m)代入,得解得或者m0(舍去)因此点C的坐标为(2,2) 图2 图3考点伸展如果第(3)题中,把“四边形ABCD是菱形”改为“以A、B、C、D为顶点的四边形是菱形”,那么还存在另一种情况:如图4,点C的坐标为图4 例4 2011年江西省中考第24题将抛物线c1:沿x轴翻折,得到抛物线c2,如图1所示(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E当B、D是线段AE的三等分点时,求m的值;在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由图1动感体验请打开几何画板文件名“11江西24”,拖动点M向左平移,可以体验到,四边形ANEM可以成为矩形,此时B、D重合在原点观察B、D的位置关系,可以体验到,B、D是线段AE的三等分点,存在两种情况思路点拨1把A、B、D、E、M、N六个点起始位置的坐标罗列出来,用m的式子把这六个点平移过程中的坐标罗列出来2B、D是线段AE的三等分点,分两种情况讨论,按照AB与AE的大小写出等量关系列关于m的方程3根据矩形的对角线相等列方程满分解答(1)抛物线c2的表达式为(2)抛物线c1:与x轴的两个交点为(1,0)、(1,0),顶点为抛物线c2:与x轴的两个交点也为(1,0)、(1,0),顶点为抛物线c1向左平移m个单位长度后,顶点M的坐标为,与x轴的两个交点为、,AB2抛物线c2向右平移m个单位长度后,顶点N的坐标为,与x轴的两个交点为、所以AE(1m)(1m)2(1m)B、D是线段AE的三等分点,存在两种情况:情形一,如图2,B在D的左侧,此时,AE6所以2(1m)6解得m2情形二,如图3,B在D的右侧,此时,AE3所以2(1m)3解得图2 图3 图4如果以点A、N、E、M为顶点的四边形是矩形,那么AEMN2OM而OM2m23,所以4(1m)24(m23)解得m1(如图4)考点伸展第(2)题,探求矩形ANEM,也可以用几何说理的方法:在等腰三角形ABM中,因为AB2,AB边上的高为,所以ABM是等边三角形同理DEN是等边三角形当四边形ANEM是矩形时,B、D两点重合因为起始位置时BD2,所以平移的距离m1例5 2010年河南省中考第23题如图1,在平面直角坐标系中,已知抛物线经过A(4,0)、B(0,4)、C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标 图1 图2动感体验请打开几何画板文件名“10河南23”,拖动点M在第三象限内抛物线上运动,观察S随m变化的图象,可以体验到,当D是AB的中点时,S取得最大值拖动点Q在直线yx上运动,可以体验到,以点P、Q、B、O为顶点的四边形有3个时刻可以成为平行四边形,双击按钮可以准确显示思路点拨1求抛物线的解析式,设交点式比较简便2把MAB分割为共底MD的两个三角形,高的和为定值OA3当PQ与OB平行且相等时,以点P、Q、B、O为顶点的四边形是平行四边形,按照P、Q的上下位置关系,分两种情况列方程满分解答(1) 因为抛物线与x轴交于A(4,0)、C(2,0)两点,设ya(x4)(x2)代入点B(0,4),求得所以抛物线的解析式为(2)如图2,直线AB的解析式为yx4过点M作x轴的垂线交AB于D,那么所以因此当时,S取得最大值,最大值为4(3) 如果以点P、Q、B、O为顶点的四边形是平行四边形,那么PQ/OB,PQOB4设点Q的坐标为,点P的坐标为当点P在点Q上方时,解得此时点Q的坐标为(如图3),或(如图4)当点Q在点P上方时,解得或(与点O重合,舍去)此时点Q的坐标为(4,4) (如图5) 图3 图4 图5考点伸展在本题情境下,以点P、Q、B、O为顶点的四边形能成为直角梯形吗?如图6,Q(2,2);如图7,Q(2,2);如图8,Q(4,4) 图6 图7 图8例6 2010年山西省中考第26题在直角梯形OABC中,CB/OA,COA90°,CB3,OA6,BA分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD5,OE2EB,直线DE交x轴于点F求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由 图1 图2动感体验请打开几何画板文件名“10山西26”,拖动点M可以在直线DE上运动分别双击按钮“DO、DM为邻边”、“ DO、DN为邻边”和“DO为对角线”可以准确显示菱形思路点拨1第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础2讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边满分解答(1)如图2,作BHx轴,垂足为H,那么四边形BCOH为矩形,OHCB3在RtABH中,AH3,BA,所以BH6因此点B的坐标为(3,6)(2) 因为OE2EB,所以,E(2,4)设直线DE的解析式为ykxb,代入D(0,5),E(2,4),得 解得,所以直线DE的解析式为(3) 由,知直线DE与x轴交于点F(10,0),OF10,DF如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点此时点M的坐标为(5,),点N的坐标为(5,)如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8)如图5,当DO、DM为菱形的邻边时,NO5,延长MN交x轴于P由NPODOF,得,即解得,此时点N的坐标为 图3 图4 考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形 图5 图6例 7 2009年福州市中考第21题如图1,等边ABC的边长为4,E是边BC上的动点,EHAC于H,过E作EFAC,交线段AB于点F,在线段AC上取点P,使PEEB设ECx(0x2)(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含的代数式表示);(3)当(2)中 的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围图1动感体验 请打开几何画板文件名“09福州21”,拖动点E在BC上运动,观察面积随x变化的图象,可以体验到,当E是BC的中点时,平行四边形EFPQ的面积最大,此时四边形EFPQ是菱形拖动点M在BC的垂直平分线上运动可以改变E的大小,可以体验到,E与平行四边形EFPQ四条边交点的总个数可能为2,4,6,3,0思路点拨1如何用含有x的式子表示平行四边形的边PQ,第(1)题作了暗示2通过计算,求出平行四边形面积最大时的x值,准确、规范地画出此时的图形是解第(3)题的关键,此时点E是BC的中点,图形充满了特殊性3画出两个同心圆可以帮助探究、理解第(3)题:过点H的圆,过点C的圆满分解答(1)BE、PE、BF三条线段中任选两条(2)如图2,在RtCEH中,C60°,ECx,所以因为PQFEBE4x,所以(3)因为,所以当x2时,平行四边形EFPQ的面积最大此时E、F、P分别为ABC的三边BC、AB、AC的中点,且C、Q重合,四边形EFPQ是边长为2的菱形(如图3) 图2 图3过点E点作EDFP于D,则EDEH如图4,当E与平行四边形EFPQ的四条边交点的总个数是2个时,0r;如图5,当E与平行四边形EFPQ的四条边交点的总个数是4个时,r; 如图6,当E与平行四边形EFPQ的四条边交点的总个数是6个时,r2;如图7,当E与平行四边形EFPQ的四条边交点的总个数是3个时,r2时;如图8,当E与平行四边形EFPQ的四条边交点的总个数是0个时,r2时 图4 图5 图6 图7 图8考点伸展本题中E是边BC上的动点,设ECx,如果没有限定0x2,那么平行四边形EFPQ的面积是如何随x的变化而变化的?事实上,当x2时,点P就不存在了,平行四边形EFPQ也就不存在了因此平行四边形EFPQ的面积随x的增大而增大例8 2009年江西省中考第24题如图1,抛物线与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF/DE交抛物线于点F,设点P的横坐标为m用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?设BCF的面积为S,求S与m的函数关系图1动感体验 请打开几何画板文件名“09江西24”,拖动点P在BC上运动,可以体验到,四边形PEDF可以成为平行四边形观察BCF的形状和S随m变化的图象,可以体验到,S是m的二次函数,当P是BC的中点时,S取得最大值思路点拨1数形结合,用函数的解析式表示图象上点的坐标,用点的坐标表示线段的长2当四边形PEDF为平行四边形时,根据DE=FP列关于m的方程3把BCF分割为两个共底FP的三角形,高的和等于OB满分解答(1)A(1,0),B(3,0),C(0,3)抛物线的对称轴是x1(2)直线BC的解析式为yx3把x1代入yx3,得y2所以点E的坐标为(1,2)把x1代入,得y4所以点D的坐标为(1,4)因此DE=2因为PF/DE,点P的横坐标为m,设点P的坐标为,点F的坐标为,因此当四边形PEDF是平行四边形时,DE=FP于是得到解得,(与点E重合,舍去)因此,当m=2时,四边形PEDF是平行四边形时设直线PF与x轴交于点M,那么OM+BM=OB=3因此m的变化范围是0m3 图2 图3考点伸展在本题条件下,四边形PEDF可能是等腰梯形吗?如果可能,求m的值;如果不可能,请说明理由如图4,如果四边形PEDF是等腰梯形,那么DG=EH,因此于是解得(与点CE重合,舍去),(与点E重合,舍去)因此四边形PEDF不可能成为等腰梯形图4-