欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    马文蔚第五版物理第8章作业题解.doc

    • 资源ID:24156643       资源大小:329KB        全文页数:10页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    马文蔚第五版物理第8章作业题解.doc

    【精品文档】如有侵权,请联系网站删除,仅供学习与交流马文蔚第五版物理第8章作业题解.精品文档.8 6一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势分析由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链解线圈中总的感应电动势当 时,8 10如图()所示,把一半径为R 的半圆形导线OP 置于磁感强度为B的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解在用后一种方法求解时,应注意导体上任一导线元l 上的动生电动势.在一般情况下,上述各量可能是l 所在位置的函数矢量(v ×B)的方向就是导线中电势升高的方向解1如图()所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x,则即由于静止的 形导轨上的电动势为零,则E 2RvB式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高解2建立如图(c)所示的坐标系,在导体上任意处取导体元l,则由矢量(v ×B)的指向可知,端点P 的电势较高解3连接OP 使导线构成一个闭合回路由于磁场是均匀的,在任意时刻,穿过回路的磁通量常数.由法拉第电磁感应定律可知,E 0又因 E EOP EPO即 EOP EPO 2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势上述求解方法是叠加思想的逆运用,即补偿的方法8 11长为L的铜棒,以距端点r 处为支点,以角速率绕通过支点且垂直于铜棒的轴转动.设磁感强度为B的均匀磁场与轴平行,求棒两端的电势差分析应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向)本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是OA 棒与OB 棒上电动势的代数和,如图()所示而EO A 和EO B 则可以直接利用第 2 节例1 给出的结果解1如图()所示,在棒上距点O 为l 处取导体元l,则因此棒两端的电势差为当L 2r 时,端点A 处的电势较高解2将AB 棒上的电动势看作是OA 棒和OB 棒上电动势的代数和,如图()所示其中则8 12如图所示,长为L 的导体棒OP,处于均匀磁场中,并绕OO轴以角速度旋转,棒与转轴间夹角恒为,磁感强度B 与转轴平行求OP 棒在图示位置处的电动势分析如前所述,本题既可以用法拉第电磁感应定律 计算(此时必须构造一个包含OP导体在内的闭合回路, 如直角三角形导体回路OPQO),也可用来计算由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的解1由上分析,得由矢量的方向可知端点P 的电势较高解2设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量为零,则回路的总电动势显然,EQO 0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效后者是垂直切割的情况8 17半径为R 2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如,求距螺线管中心轴r 50 cm处感生电场的大小和方向分析变化磁场可以在空间激发感生电场,感生电场的空间分布与场源变化的磁场(包括磁场的空间分布以及磁场的变化率 等)密切相关,即.在一般情况下,求解感生电场的分布是困难的但对于本题这种特殊情况,则可以利用场的对称性进行求解可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆同一圆周上各点的电场强度Ek 的大小相等,方向沿圆周的切线方向图中虚线表示r R和r R 两个区域的电场线电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当 时,电场线绕向与前者相反解如图所示,分别在r R 和r R 的两个区域内任取一电场线为闭合回路l(半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向(1) r R,r R,由于,故电场线的绕向为逆时针(2) 由于r R,所求点在螺线管外,因此将r、R、的数值代入,可得,式中负号表示Ek的方向是逆时针的8 19截面积为长方形的环形均匀密绕螺绕环,其尺寸如图()所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L分析如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量求自感L 的方法有两种:1设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式计算L2让回路中通以变化率已知的电流,测出回路中的感应电动势EL ,由公式计算L式中EL 和都较容易通过实验测定,所以此方法一般适合于工程中此外,还可通过计算能量的方法求解解用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图()所示,由安培环路定理可求得在R1 r R2 范围内的磁场分布为由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为则若管中充满均匀同种磁介质,其相对磁导率为r ,则自感将增大r倍8 21有两根半径均为a 的平行长直导线,它们中心距离为d试求长为l的一对导线的自感(导线内部的磁通量可略去不计)分析两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分设在矩形回路中通有逆时针方向电流I,然后计算图中阴影部分(宽为d、长为l)的磁通量该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加解在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为穿过图中阴影部分的磁通量为则长为l 的一对导线的自感为如导线内部磁通量不能忽略,则一对导线的自感为L1 称为外自感,即本题已求出的L,L2 称为一根导线的内自感长为l的导线的内自感,有兴趣的读者可自行求解8 23如图所示,一面积为4.0 cm2 共50 匝的小圆形线圈A,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面设线圈A 内各点的磁感强度可看作是相同的求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为50 A·1 时,线圈A 中感应电动势的大小和方向分析设回路中通有电流I1 ,穿过回路的磁通量为21 ,则互感M M21 21I1 ;也可设回路通有电流I2 ,穿过回路的磁通量为12 ,则 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量BS反之,如设线圈A 通有电流I,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径解(1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为则两线圈的互感为(2)互感电动势的方向和线圈B 中的电流方向相同8 24如图所示,两同轴单匝线圈A、C 的半径分别为R 和r,两线圈相距为d若r很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的求两线圈的互感若线圈C 的匝数为N 匝,则互感又为多少?解设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍8 25如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm2 ,沿环每厘米绕有100 匝线圈,通有电流I1 4.0 ×10 2 A,在环上再绕一线圈C,共10 匝,其电阻为0.10 ,今将开关 突然开启,测得线圈C 中的感应电荷为2.0 ×10 3 C求:当螺绕环中通有电流I1 时,铁磁质中的B 和铁磁质的相对磁导率r分析本题与题 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度线圈C 的磁通变化是与环形螺线管中的电流变化相联系的解当螺绕环中通以电流I1 时,在环内产生的磁感强度则通过线圈C 的磁链为设断开电源过程中,通过C 的感应电荷为qC ,则有由此得相对磁导率8 27一无限长直导线,截面各处的电流密度相等,总电流为I试证:单位长度导线内所贮藏的磁能为分析本题中电流激发的磁场不但存在于导体内当r R 时,而且存在于导体外当r R 时,由于本题仅要求单位长度导体内所储存的磁能,故用公式计算为宜,因本题中B 呈柱对称性,取单位长度,半径为r,厚为r 的薄柱壳(壳层内处处相同)为体元V,则该体元内储存的能量,积分即可求得磁能证根据以上分析单位长度导线内贮存的磁能为上述结果仅为单位长度载流导线内所具有的磁场能量,它是总磁场能量的一部分,总能量还应包括导线外磁场所储存的磁能8 30在真空中,若一均匀电场中的电场能量密度与一0.50 的均匀磁场中的磁场能量密度相等,该电场的电场强度为多少?解,按题意,当时,有,则8 31设有半径R 0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d 0.50 cm,以恒定电流I 2.0 A 对电容器充电求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的)分析尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场从这个意义来说,变化电场可视为一种“广义电流”,即位移电流在本题中,导线内存在着传导电流Ic,而在平行板电容器间存在着位移电流Id,它们使电路中的电流连续,即解忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流,由此得位移电流密度的大小8 7有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示求线圈中的感应电动势分析本题仍可用法拉第电磁感应定律来求解由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B1 与B2 之和)为了积分的需要,建立如图所示的坐标系由于B 仅与x 有关,即,故取一个平行于长直导线的宽为x、长为d 的面元S,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分)本题在工程技术中又称为互感现象,也可用公式求解解1穿过面元S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为当电流以变化时,线圈中的互感电动势为试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势设时刻t,线圈左端距右侧直导线的距离为,则穿过回路的磁通量,它表现为变量I和的二元函数,将代入 即可求解,求解时应按复合函数求导,注意,其中,再令d 即可求得图示位置处回路中的总电动势最终结果为两项,其中一项为动生电动势,另一项为感生电动势8 14如图()所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向分析本题亦可用两种方法求解其中应注意下列两点:1当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和如图()所示,导体eh 段和fg 段上的电动势为零此两段导体上处处满足,因而线框中的总电动势为其等效电路如图()所示2用公式求解,式中是线框运动至任意位置处时,穿过线框的磁通量为此设时刻t 时,线框左边距导线的距离为,如图(c)所示,显然是时间t 的函数,且有在求得线框在任意位置处的电动势E()后,再令d,即可得线框在题目所给位置处的电动势解1根据分析,线框中的电动势为由Eef Ehg 可知,线框中的电动势方向为efgh解2设顺时针方向为线框回路的正向根据分析,在任意位置处,穿过线框的磁通量为相应电动势为令d,得线框在图示位置处的电动势为由E 0 可知,线框中电动势方向为顺时针方向8 16有一磁感强度为B 的均匀磁场,以恒定的变化率在变化把一块质量为m 的铜,拉成截面半径为r的导线,并用它做成一个半径为R 的圆形回路圆形回路的平面与磁感强度B 垂直试证:这回路中的感应电流为式中 为铜的电阻率,d 为铜的密度解圆形回路导线长为,导线截面积为,其电阻R为在均匀磁场中,穿过该回路的磁通量为,由法拉第电磁感应定律可得回路中的感应电流为而,即,代入上式可得8 18在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行如图()所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率为常量试证:棒上感应电动势的大小为分析变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势此外,还可连接OP、OQ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP、OQ 沿半径方向,与通过该处的感生电场强度Ek 处处垂直,故,OP、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势证1由法拉第电磁感应定律,有证2由题 17可知,在r R 区域,感生电场强度的大小设PQ 上线元x 处,Ek的方向如图(b)所示,则金属杆PQ 上的电动势为讨论假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 28未来可能会利用超导线圈中持续大电流建立的磁场来储存能量要储存1 kW·h的能量,利用1.0的磁场,需要多大体积的磁场? 若利用线圈中500A 的电流储存上述能量,则该线圈的自感系数应该多大?解由磁感强度与磁场能量间的关系可得所需线圈的自感系数为

    注意事项

    本文(马文蔚第五版物理第8章作业题解.doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开